Nuclear Magnetic Relaxation in Antiferromagnetics, II
スポンサーリンク
概要
- 論文の詳細を見る
Theory of nuclear magnetic relaxation in antiferromagnetics treated in the preceding paper for non-magnetic ions is extended to the case of magnetic ions. Strong hyperfine interactions and quadrupole interactions are the distinctive feature of the problem. The line width and the relaxation rate are calculated by using the spin wave approximation at low temperatures and the model of Gaussian random modulation at high temperatures. Order estimations of T_1 and T_2 are made for several substances, which predict that the nuclear resonance will be difficult to detect above the Curie point because of the broadening due to the hyperfine interaction, while the resonance will become detectable at sufficiently low temperatures where the low frequency components of the local field spectra decrease remarkably. The effects of the quadrupole interaction are also discussed.
- 理論物理学刊行会の論文
著者
-
Moriya Toru
Deparment Of Physics Wasea University
-
Moriya Toru
Department Of Physics Tokyo Metropolitan University
-
MORIYA Toru
Department of Physics, Tokyo Metropolitan University
関連論文
- The Effects of Covalency on the Nuclear Magnetic Resonance in Ionic Crystals
- Electrical Resistivity of Doped Mott Insulators V_O_3
- Effect of Spin Fluctuations on the Specific Heat of Weakly and Nearly Ferromagnetic Metals
- Ferromagnetic Spin Fluctuations in Two-Dimensional Metals
- Spin Fluctuation-Induced Superconductivity in Two and Three Dimensional Systems
- Theory of Spin Fluctuation-Induced Superconductivity Based on a d-p Model. II. : Superconducting State
- On the Metal-Insulator Transition in a Two-Dimensional Hubbard Model
- Nuclear Magnetic Relaxation around the Magnetic Instabilities in Metals
- On the Magnetic and Metal-Insulator Transitions in a Two-Dimensional Hubbard Model
- Developments of the theory of spin fluctuations and spin fluctuation-induced superconductivity
- Anomalous Optical Conductivity around the Antiferromagnetic Instability in Metals
- Superconductivity in Organic Compounds with Pseudo-Triangular Lattice (Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Anomalous Specific Heat around Ferromagnetic Instability in Metals
- On the Theory of Spin Fluctuations around the Magnetic Instabilities Effects of Zero-Point Fluctuations
- Theory of Spin Fluctuation-Induced Superconductivity Based on a d-p Model
- Spin Fluctuation-Induced Superconductivity in Organic Compounds
- Origin of Superconductivity in 2D-Organic Compounds and High-T_c Cuprates
- Essential Importance of Dimerization for the Superconductivity in Organic Compounds (ET)_2X
- Neutron Scattering Peak in the High-T_c Cuprate Superconductors
- Spin Quenching and Magnetic Resonance
- On the Magnetic Anisotropy of FeF_2 and CoF_2
- On the Spin Fluctuation-Enhanced Specific Heat around the Magnetic Instabilities
- Nuclear Magnetic Relaxation in Antiferromagnetics, II
- Nuclear Magnetic Resonance of Transition Elements in Paramagnetic Salts
- Nuclear Magnetic Relaxation in Antiferromagnetics
- On the Origin of the Anisotropy Energy of CuCl_2・2H_2O
- Anomalous Properties around Magnetic Instability in Heavy Electron Systems
- New Result in the Production and Decay of an Isotope, 278113, of the 113th Element
- Spin Fluctuation Spectra and High Temperature Superconductivity