多重調和関数論に於けるリュービルの定理
スポンサーリンク
概要
- 論文の詳細を見る
The primary purpose of this paper is to propose and prove by Fourier expansion method a theorem of Liouville type for polyharmonic functions which is a direct extension of our former result given for harmonic functions which contains the classical Liouville theorem. The important tool for the above proof is the so-called Almansi decomposition of polyharmonic functions, the necessary and sufficient conditions for the possibility of which is explained in detail from our point of view just for the sake of convenience. The uniqueness of the decomposition is also proved for a more general family of functions including polyharmonic functions. Our theorem is compared with those of Armitage, Mizuta, and Futamura-Kishi-Mizuta, among others, relevant to Liouville type assertions for polyharmonic functions, and the relations between them are clarified. Finally we give a detailed proof of a general theorem of Liouville type not only for polyharmonic functions but also for a much more wide family of functions including polyharmonic functions. This result contains our main result mentioned above.
- 大同工業大学の論文
著者
関連論文
- Relative classes of harmonic functions on Riemann surfaces (ポテンシャル論とベルグマン核--RIMS共同研究報告集)
- 超等角的ロイデン完閉化の一性質
- 有界調和関数
- ピカール原理に関する除外摂動の十分条件
- A uniqueness theorem and the Myrberg phenomenon for a Zalcman domain (II) (Analytic Function Spaces and Operators on these Spaces)
- A uniqueness theorem and the Myrberg phenomenon for a Zalcman domain (I) (Analytic Function Spaces and Operators on these Spaces)
- ガウス型平均連続性とワイル型補題
- 対称截線領域の相対調和次元
- ON THE MEAN CONTINUITY OF GAUSS(Potential Theory and its Related Fields)
- シュレーディンガー作用素に対する公理論的及び超函数的優調和性
- 双曲性の増大及び縮小不変性
- シュレーディンガー作用素のグリーン関数
- Dini導関数とその応用
- 調和次元論における連続体仮説の役割
- ピカール原理に於ける本態集合と除外摂動
- 多重調和関数論に於けるリュービルの定理
- シュレーディンガー方程式のディリクレ問題
- 双曲性の非極大性
- ピカール次元の変動
- 正型ポテンシャルのピカール次元
- グリーン関数の具体的表示とその応用
- 被覆面の型 (調和・解析関数空間と線型作用素II)
- Types of complete infinitely sheeted planes (Potential Theory and Related Topics)
- EXISTENCE OF QUASIISOMETRIC MAPPINGS AND ROYDEN COMPACTIFICATIONS (Potential Theory and its Related Fields)
- ディリクレ問題に於ける領域の摂動 (調和・解析関数空間と線形作用素)
- THE ROLE OF BOUNDARY HARNACK PRINCIPLE IN THE STUDY OF PICARD PRINCIPLE(POTENTIAL THEORY AND ITS APPLICATIONS)
- ベルグマン核の構成
- THE MARTIN AND ROYDEN COMPACTIFICATIONS OF TOKI COVERING SURFACES (Potential theory and fiber spaces)