シュレーディンガー方程式のディリクレ問題
スポンサーリンク
概要
- 論文の詳細を見る
The study on a stationary Schrodinger eauation (-△+μ)u=0 having a signed Radon measure μ on a subdomain R of the d-dimensional (d〓2) Euclidean space R^d as its potential can be reduced to that on the space(R,_μH) with the μharmonic function sheaf _μH. In order that the Dirichlet problem concerning (-△+μ)u=0 by the method of Perron- Wiener-Brelot can be effectively discussed, it is necessary for (R,_μH) to form a Brelot space determined by the Brelot axioms 1, 2, and 3. In this paper it is proved that for (R,_μH) to form a Brelot space it is sufficient, and in particular necessary and sufficient, when μ is of constant sign, thatμ is a Kato measure. In passing, a proof is given to that the Brelot axiom 3 is equivalent to the validity of the Harnack inequality when the Brelot axioms 1 and 2 are postulated for (R,_μH).
- 大同工業大学の論文
著者
関連論文
- 超等角的ロイデン完閉化の一性質
- ON THE MEAN CONTINUITY OF GAUSS(Potential Theory and its Related Fields)
- ピカール原理に於ける本態集合と除外摂動
- 多重調和関数論に於けるリュービルの定理
- シュレーディンガー方程式のディリクレ問題
- 双曲性の非極大性
- ピカール次元の変動
- 正型ポテンシャルのピカール次元
- グリーン関数の具体的表示とその応用
- ディリクレ問題に於ける領域の摂動 (調和・解析関数空間と線形作用素)
- THE ROLE OF BOUNDARY HARNACK PRINCIPLE IN THE STUDY OF PICARD PRINCIPLE(POTENTIAL THEORY AND ITS APPLICATIONS)