ピカール原理に関する除外摂動の十分条件
スポンサーリンク
概要
- 論文の詳細を見る
With a Schrodinger operator -Δ+μ on the punctured unit disc having a rotationally invariant signed measure μ as its potential we associate another Schrodinger operator -Δ+(μ+v) having the measure μ+v obtained from μ by applying a small perturbation +v, which is also a rotationally invariant signed measure, as its potential. The above measure v is referred to as a negligible perturbation for the Picard principle if the Picard principle is valid or invalid simultaneously for the operator -Δ+μ and -Δ+(μ+v) for every admissible μ. To characterize negligible perturbations is very important especially from the view point of many practical applications and actually quite a few such conditions and mostly sufficient conditions have been given by many authors. We will give in the present paper an entirely new and in a sense more precise sufficient condition for a given v to be negligible compared with those known thus far.
著者
関連論文
- Relative classes of harmonic functions on Riemann surfaces (ポテンシャル論とベルグマン核--RIMS共同研究報告集)
- 超等角的ロイデン完閉化の一性質
- 有界調和関数
- ピカール原理に関する除外摂動の十分条件
- A uniqueness theorem and the Myrberg phenomenon for a Zalcman domain (II) (Analytic Function Spaces and Operators on these Spaces)
- A uniqueness theorem and the Myrberg phenomenon for a Zalcman domain (I) (Analytic Function Spaces and Operators on these Spaces)
- ガウス型平均連続性とワイル型補題
- 対称截線領域の相対調和次元
- ON THE MEAN CONTINUITY OF GAUSS(Potential Theory and its Related Fields)
- シュレーディンガー作用素に対する公理論的及び超函数的優調和性
- 双曲性の増大及び縮小不変性
- シュレーディンガー作用素のグリーン関数
- Dini導関数とその応用
- 調和次元論における連続体仮説の役割
- ピカール原理に於ける本態集合と除外摂動
- 多重調和関数論に於けるリュービルの定理
- 双曲性の非極大性
- ピカール次元の変動
- 正型ポテンシャルのピカール次元
- グリーン関数の具体的表示とその応用
- 被覆面の型 (調和・解析関数空間と線型作用素II)
- Types of complete infinitely sheeted planes (Potential Theory and Related Topics)
- EXISTENCE OF QUASIISOMETRIC MAPPINGS AND ROYDEN COMPACTIFICATIONS (Potential Theory and its Related Fields)
- ディリクレ問題に於ける領域の摂動 (調和・解析関数空間と線形作用素)
- ベルグマン核の構成
- THE MARTIN AND ROYDEN COMPACTIFICATIONS OF TOKI COVERING SURFACES (Potential theory and fiber spaces)