Analysis of Traveling Behavior of Nut Coke Particles in Bell-type Charging Process of Blast Furnace by Using Discrete Element Method
スポンサーリンク
概要
- 論文の詳細を見る
The objective of this paper is to analyze the particle behavior in bell-type charging process of actual blast furnace by using Discrete Element Method (DEM). The circumferential balance of charged mass in the quad-hopper and the effect of the nut coke particle position in the quad-hopper on the traveling behavior and the segregation were discussed. The mass flow rate discharged from the rotating chute was fluctuated with the time, and the peak values gave when the directions of the chute movement became same as the one of the conveyor. It leads to the unbalance of charged particles in each part of the quad-hopper. The nut coke moved to the upward in the sintered ore particle layer during traveling to large bell from the quad-hopper due to the particle segregation, when they were segregated at the bottom of hopper. However their relative positions moved downward when they were segregated at the top, because the time for starting discharging of nut coke became faster. The installation of the damper at the way to the small bell from the hopper affects on the circumferential balance of mass of nut coke. Most of nut coke particles were charged at near the wall of blast furnace, and the small peak of the distribution of its specific charged mass was seen around 3.0 m in the radial distance from the center, it caused by the particle segregation during flowing on the particle layer. The relative radial distribution of the nut coke particles wasnt affected by their positions in the large bell and the total mass. Thus, keeping the circumferential balance of nut coke mass in the large bell is very important. The position of nut coke particle didnt affect on the segregation of sintered ore. The radial distributions of relative charged mass for all conditions were quite similar.
- 社団法人 日本鉄鋼協会の論文
- 2010-07-15
著者
-
Mio Hiroshi
Research Center for Advanced Science and Technology, Doshisha University
-
Komatsuki Satoshi
Department of Chemical Engineering and Materials Science, Doshisha University
-
Akashi Masatoshi
Department of Chemical Engineering and Materials Science, Doshisha University
-
Shimosaka Atsuko
Department of Chemical Engineering and Materials Science, Doshisha University
-
Shirakawa Yoshiyuki
Department of Chemical Engineering and Materials Science, Doshisha University
-
Hidaka Jusuke
Department of Chemical Engineering and Materials Science, Doshisha University
-
Kadowaki Masatomo
Environmental and Process Technology Center, Nippon Steel Corporation
-
Yokoyama Hirokazu
Environmental and Process Technology Center, Nippon Steel Corporation
-
Matsuzaki Shinroku
Environmental and Process Technology Center, Nippon Steel Corporation
-
Kunitomo Kazuya
Environmental and Process Technology Center, Nippon Steel Corporation
-
Hidaka Jusuke
Department Of Chemical Engineering And Materials Science Doshisha University
-
Hidaka Jusuke
Department Of Chemical Engineering And Material Science Faculty Of Science Engineering Doshisha Univ
-
Shirakawa Yoshiyuki
Department Of Chemical Engineering And Materials Science Doshisha University
-
Shirakawa Y
Osaka Univ. Osaka
-
Shirakawa Yoshiyuki
Department Of Materials Science And Processing Faculty Of Engineering Osaka University
-
Hidaka J
Department Of Chemical Engineering And Materials Science Doshisha University
-
Mio Hiroshi
Research Center For Advanced Science And Technology Doshisha University
-
Matsuzaki Shinroku
Engineering Research Center Nippon Steel Corporation
-
Matsuzaki Shinroku
Environment & Process Technology Center Nippon Steel Corporation
-
Yokoyama Hirokazu
Environmental And Process Technology Center Nippon Steel Corporation
-
KADOWAKI Masatomo
Engineering Research Center, Nippon Steel Corporation
-
KUNITOMO Kazuya
Engineering Research Center, Nippon Steel Corporation
-
Kunitomo Kazuya
Engineering Research Center Nippon Steel Corporation
-
Kunitomo Kazuya
Environment & Process Technology Center
-
Kadowaki Masatomo
Engineering Research Center Nippon Steel Corporation
-
Akashi Masatoshi
Department Of Chemical Engineering And Materials Science Doshisha University
-
Shimosaka A
Department Of Chemical Engineering And Materials Science Doshisha University
-
Shimosaka Atsuko
Department Of Chemical Engineering And Materials Science Doshisha University
-
Komatsuki Satoshi
Department Of Chemical Engineering And Materials Science Doshisha University
-
Yokoyama Hirokazu
Environment & Process Technology Center, Nippon Steel Corporation
関連論文
- Analysis of Traveling Behavior of Nut Coke Particles in Bell-type Charging Process of Blast Furnace by Using Discrete Element Method
- Neutron Diffraction Study of Liquid Bi-Se Alloys
- Structural Study of Molten Silver Halides by Neutron Diffraction
- Structures of Molten CuCl,CuBr and CuI
- Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel
- Estimation of Separation Efficiency of Metallic Filter Media Based on Pore Size Distribution
- First-Principles Study of Molecule/Al Interfaces
- Estimation of the sieving rate of powders using computer simulation
- Simulation of Mass Flow Rate of Particles Discharged from Hopper by Particle Element Method
- Quantum chemical calculation of electron transfer at metal/polymer interfaces
- Effect of paddle rotational speed on particle mixing behavior in electrophotographic system by using parallel discrete element method
- Diffusion and Cluster Formation near NaCl Solution/Organic Solvent Interface in a Crystallization Process
- Effect of Chute Angle on Charging Behavior of Sintered Ore Particles at Bell-less Type Charging System of Blast Furnace by Discrete Element Method
- Validation of Particle Size Segregation of Sintered Ore during Flowing through Laboratory-scale Chute by Discrete Element Method
- Estimation of Bulk Density Distribution in Particle Charging Process Using Discrete Element Method Considering Particle Shape
- Formation and morphology of asymmetric NaCl particles precipitated at the liquid-liquid interface
- Cell optimization for fast contact detection in the discrete element method algorithm
- Production of Asymmetrical Particles in a Crystallization Process Using Liquid-Liquid Interfaces
- Structural dependence of ionic motion at interfaces between NaCl crystal surfaces and supersaturated solutions in crystallization process
- Modeling of Solid Particle Flow in Blast Furnace Considering Actual Operation by Large-scale Discrete Element Method
- Analysis of Developing Behavior in Two-Component Development System by Large-Scale Discrete Element Method
- Analysis of Separation Characteristics of Rotating Probability Screen
- Effect of interfacial structures on ionic conductivity in particle-dispersed composite electrolytes
- Optimum Cell Condition for Contact Detection Having a Large Particle Size Ratio in the Discrete Element Method
- Optimum Cell Size for Contact Detection in the Algorithm of the Discrete Element Method
- Simulation of flow behavior of a two-component developer in an electro-photographic system
- Electronic Properties of Hybrid Materials Consisting of N-type Nanocrystals and Amorphous Selenium Matrix
- Ultrasonic Velocity and Absorption in Molten Cuprous Halides
- Blast Furnace Ironmaking System Using Partially Reduced Iron Ore Reduced by an Energy Source with Low Carbon Content
- Transport Coefficients in Molten NaCl by Computer Simulation
- Charge Distributions in Liquid Ag-Based Alloys
- Magnetic and Thermodynamical Properties of Liquid Ag-Polyvalent Alloys
- Magnetic Properties of Liquid Ag-In System
- Neutron Diffraction Study on Molten Salt Mixtures; CuCl-CuBr and AgBr-AgI Systems
- Neutron Diffraction Study of Liquid Tl-Se Alloys
- Improvement in Blast Furnace Reaction Efficiency through the Use of Highly Reactive Calcium Rich Coke
- Ultrasonic Velocity and Attenuation of Molten Cupric Halides
- Analysis of Traveling Behavior of Nut Coke Particles in Bell-type Charging Process of Blast Furnace by Using Discrete Element Method
- Effect of Chute Angle on Charging Behavior of Sintered Ore Particles at Bell-less Type Charging System of Blast Furnace by Discrete Element Method
- Validation of Particle Size Segregation of Sintered Ore during Flowing through Laboratory-scale Chute by Discrete Element Method
- Estimation of Bulk Density Distribution in Particle Charging Process Using Discrete Element Method Considering Particle Shape
- Modeling of Solid Particle Flow in Blast Furnace Considering Actual Operation by Large-scale Discrete Element Method
- Numerical Simulation of Particle and Air Velocity Fields in Raceway in Model Blast Furnace and Comparison with Experimental Data (Cold Model)
- Large Scale Simulation of Coke and Iron Ore Particle Motions and Air Flow in Actual Blast Furnace
- Numerical Simulation of Effect of Tuyere Angle and Wall Scaffolding on Unsteady Gas and Particle Flows Including Raceway in Blast Furnace
- Application of Improved Local Models of Large Scale Database-based Online Modeling to Prediction of Molten Iron Temperature of Blast Furnace
- Preparation of porous particles by liquid-liquid interfacial crystallization
- Estimation of Power during Dispersion in Stirred Media Mill by DEM-LES Simulation
- Simulation of Drying of Particulate Suspensions in Spray-Drying Granulation Process
- Estimation of particle size distribution from cross-sectional particle diameter on the cutting plane
- Activation of Deadman State in Blast Furnace Using Deadman Blowing Method
- Reaction behavior of Formed Iron Coke and Its Effect on Decreasing Thermal Reserve Zone Temperature in Blast Furnace
- Control of CO_2 Peak Position by Dual Lance Air Curtain Method
- Enhancement of Low-temperature Gasification and Reduction by Using Iron-coke in Laboratory Scale Tests
- Revealing the formation mechanism of granules by drying simulation of slurry droplet
- Estimation of Power during Dispersion in Stirred Media Mill by Coupled DEM-LES Simulation
- Solid electrolyte films in controlling their structures by electrophoretic deposition method
- Estimation Equation for Sieving Rate Based on the Model for Undersized Particles Passing through Vibrated Particle Bed
- Heterogeneous nucleation and growth mechanism on hydrophilic and hydrophobic surface