Gasification and Reduction Behavior of Plastics and Iron Ore Mixtures by Microwave Heating
スポンサーリンク
概要
- 論文の詳細を見る
Effective utilization of waste materials is a key issue for environmental protection. In this work, fundamental research on co-generation of H2 and metallic iron from plastics and iron ore powder mixtures by microwave heating was carried out. Thermal decomposition behaviors of plastics powders, the effects of plastics type and their blending composition on the H2, CH4, CO, CO2 generation from the samples were studied.As the results, about 57–88% of hydrogen contained in the samples were recovered in forms of H2 and CH4. Concentration of generated gas was able to control by changing the blending composition of plastics and iron ore powders mixtures. Under the condition of C/O=2, about 88% of hydrogen in the sample was recovered in forms of H2 and CH4, and hydrogen did not contribute to the reduction of iron ore, apparently.
- 社団法人 日本鉄鋼協会の論文
- 2007-04-15
著者
-
Nishioka Koki
Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University
-
Ohno Ko-ichiro
Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University
-
Maeda Takayuki
Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University
-
Shimizu Masakata
Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University
-
Nishioka K
Department Of Material Science And Engineering Kyushu University
-
Ohno Ko-ichiro
Department Of Material Science And Engineering Kyushu University
-
Maeda Takayuki
Department Of Material Science And Engineering Kyushu University
-
Maeda Takayuki
Department Of Materials Science And Engineering Graduate School Of Engineering Kyushu University
-
Nishioka Koki
Department Of Material Science And Engineering Kyushu University
-
UEKI Yasuaki
Kyushu University
-
TANIGUCHI Takeshi
Department of Materials Process Engineering, Graduate School of Engineering, Kyushu University
-
UEKI Yasuaki
Department of Materials Process Engineering, Graduate School of Engineering, Kyushu University
-
Shimizu Masakata
Department Of Material Science And Engineering Kyushu University
-
Taniguchi Takeshi
Department Of Materials Process Engineering Graduate School Of Engineering Kyushu University
-
Taniguchi Takeshi
Department Of Internal Medicine Kitasato University School Of Medicine Sagamihara Japan
-
Shimizu Masakata
Department Of Materials Science And Engineering Graduate School Of Engineering Kyushu University
-
Taniguchi Takeshi
Department Of Chemistry Graduate School Of Science Osaka University
関連論文
- Development of Fe Base Phase Change Materials for High Temperature Using Solid–Solid Transformation
- Wetting and Penetration Behavior of Calcium Ferrite Melts to Sintered Hematite
- Behavior of Ironmaking Slag Permeation to Carbonaceous Material Layer
- Effect of Carbon Structure Crystallinity on Initial Stage of Iron Carburization
- Effect of Adding Moisture and Wettability on Granulation of Iron Ore
- Modeling of Dripping Behavior in Particles Packed Bed Filled with Immiscible Fluid
- Effect of Granulation Condition and Property of Raw Material on Strength of Granulated Particle by Tumbling Granulation
- Reaction Behavior during Heating Waste Plastic Materials and Iron Oxide Composites
- Gasification and Reduction Behavior of Plastics and Iron Ore Mixtures by Microwave Heating
- Kinetic Analysis of Spherical Wustite Reduction Transported with CH_4 Gas
- Application of Square-wave Pulse Heat Method to Thermal Properties Measurement of CaO-SiO_2-Al_2O_3 System Fluxes
- A Three-dimensional Mathematical Modelling of Drainage Behavior in Blast Furnace Hearth
- Formation Rate of Calcium Ferrite Melt Focusing on SiO_2 and Al_2O_3 Component
- Dezincing Behavior from Iron and Steelmaking Dusts by Microwave Heating
- Dezincing Behavior from Iron and Steelmaking Dusts by Microwave Heating
- Changes in Enzyme Activities Recognized in Lymphocytes from Patients with Carcinomas of the Gastrointestinal Tract
- Development of Fe Base Phase Change Materials for High Temperature Using Solid-Solid Transformation
- Effect of Slag Melting Behavior on Metal-Slag Separation Temperature in Powdery Iron, Slag and Carbon Mixture
- Theoretical Study of the Change in the Magnetism and Conductivity of Diethylspirobiphenalenyl
- Development of Secondary-fuel Injection Technology for Energy Reduction in the Iron Ore Sintering Process
- Diffusion Behaviors of He and CH4 in Air Flow through Packed Bed
- Effects of Charcoal Carbon Crystallinity and Ash Content on Carbon Dissolution in Molten Iron and Carburization Reaction in Iron-Charcoal Composite
- Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore
- Effect of FeO in Dripping Slag on Drainage Ability of Slag
- Preface to the Special Issue on "Innovative Reduction Technology of Iron Ore for Mitigation of CO2 Emission in Ironmaking"
- Effect of Various In-furnace Conditions on Blast Furnace Hearth Drainage
- Effects of Charcoal Carbon Crystallinity and Ash Content on Carbon Dissolution in Molten Iron and Carburization Reaction in Iron-Charcoal Composite
- Numerical Study on Pulverized Biochar Injection in Blast Furnace