Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore
スポンサーリンク
概要
- 論文の詳細を見る
As a fundamental study for clarifying the reduction phenomena of iron ore sinter in blast furnace, iron oxide (H) and quaternary calcium ferrite (Cf) were prepared and these kinetic behaviors at the final stage of reduction with CO–CO2 gas mixture were studied.Reduction rate increased with increasing reduction temperature. Moreover, it increased with increasing partial pressure of CO gas. Difference of reduction rate caused by gas composition is much larger than reduction temperature. From comparisons of weight loss curves, reduction rate of H samples was faster than that of Cf samples under the same or similar conditions.Reduction reaction of H and Cf samples proceeded topochemically at higher temperature (≥1100°C), and didn't proceed topochemically at lower temperature (≤1000°C). Besides, the reduction reaction of samples with CO rich gas proceeded more topochemically. Structure of iron layer in H samples was affected by temperature and gas composition. On the other hand, structure of iron layer in Cf samples was almost the same in all experimental conditions.Reduction data were analyzed based on one interface unreacted core model, and chemical reaction rate content kc and effective diffusion coefficient in product layer De were determined. The values of kc show Arrhenius-type temperature dependency, and were approximately same tendency except for Cf samples with near equilibriums gas compositions. The values of De of H samples show the temperature and gas composition dependencies, and that of Cf samples were approximately constant in all experimental conditions.
著者
-
Ohno Ko-ichiro
Department Of Material Science And Engineering Kyushu University
-
Maeda Takayuki
Department Of Material Science And Engineering Kyushu University
-
Shimizu Masakata
Department Of Material Science And Engineering Kyushu University
-
Noguchi Daisuke
Graduate Student, Kyushu University
-
Noguchi Daisuke
Graduate School of Science, Chiba University
-
Nishioka Kouki
Formerly Department of Materials Science & Engineering, Kyushu University
-
Shimizu Masakata
Department of Materials Science & Engineering, Kyushu University
関連論文
- Adsorptive Properties of Novel Nanoporous Materials
- Wetting and Penetration Behavior of Calcium Ferrite Melts to Sintered Hematite
- Behavior of Ironmaking Slag Permeation to Carbonaceous Material Layer
- Effect of Carbon Structure Crystallinity on Initial Stage of Iron Carburization
- Effect of Adding Moisture and Wettability on Granulation of Iron Ore
- Modeling of Dripping Behavior in Particles Packed Bed Filled with Immiscible Fluid
- Effect of Granulation Condition and Property of Raw Material on Strength of Granulated Particle by Tumbling Granulation
- Reaction Behavior during Heating Waste Plastic Materials and Iron Oxide Composites
- Gasification and Reduction Behavior of Plastics and Iron Ore Mixtures by Microwave Heating
- Kinetic Analysis of Spherical Wustite Reduction Transported with CH_4 Gas
- Application of Square-wave Pulse Heat Method to Thermal Properties Measurement of CaO-SiO_2-Al_2O_3 System Fluxes
- A Three-dimensional Mathematical Modelling of Drainage Behavior in Blast Furnace Hearth
- Formation Rate of Calcium Ferrite Melt Focusing on SiO_2 and Al_2O_3 Component
- Dezincing Behavior from Iron and Steelmaking Dusts by Microwave Heating
- Dezincing Behavior from Iron and Steelmaking Dusts by Microwave Heating
- Development of Fe Base Phase Change Materials for High Temperature Using Solid-Solid Transformation
- Effect of Slag Melting Behavior on Metal-Slag Separation Temperature in Powdery Iron, Slag and Carbon Mixture
- Development of Secondary-fuel Injection Technology for Energy Reduction in the Iron Ore Sintering Process
- Diffusion Behaviors of He and CH4 in Air Flow through Packed Bed
- Effects of Charcoal Carbon Crystallinity and Ash Content on Carbon Dissolution in Molten Iron and Carburization Reaction in Iron-Charcoal Composite
- Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore
- Effect of FeO in Dripping Slag on Drainage Ability of Slag
- Preface to the Special Issue on "Innovative Reduction Technology of Iron Ore for Mitigation of CO2 Emission in Ironmaking"
- Effect of Various In-furnace Conditions on Blast Furnace Hearth Drainage
- Effects of Charcoal Carbon Crystallinity and Ash Content on Carbon Dissolution in Molten Iron and Carburization Reaction in Iron-Charcoal Composite
- Numerical Study on Pulverized Biochar Injection in Blast Furnace