Protein Kinase A-Dependence of the Supraspinally Mediated Analgesic Effects of Gabapentin on Thermal and Mechanical Hypersensitivity
スポンサーリンク
概要
- 論文の詳細を見る
We have recently shown that gabapentin generates protein kinase A (PKA)-dependent presynaptic inhibition of GABAergic synaptic transmission in locus coeruleus (LC) neurons only under neuropathic states. To verify behaviorally this in vitro electrophysiological finding, the PKA inhibitor H-89 was injected intracerebroventricularly (i.c.v.) before supraspinal application of gabapentin in mice developing thermal and mechanical hypersensitivity after peripheral nerve injury. H-89 dose-dependently attenuated the analgesic effects of i.c.v.-injected gabapentin, suggesting that PKA-dependent removal of GABAergic inhibition of LC neurons is the most plausible synaptic mechanism underlying the supraspinally mediated analgesic effects of gabapentin involving activation of the descending noradrenergic pain-inhibitory system.
- 2009-06-20
著者
-
TANABE Mitsuo
Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
-
ONO Hideki
Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
-
Ono Hideki
Laboratory Of Cns Pharmacology Graduate School Of Pharmaceutical Sciences Nagoya City University
-
Tanabe Mitsuo
Laboratory Of Cns Pharmacology Graduate School Of Pharmaceutical Sciences Nagoya City University
-
TAKASU Keiko
Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
-
KINOSHITA Yu
Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
-
Kinoshita Yu
Laboratory Of Cns Pharmacology Graduate School Of Pharmaceutical Sciences Nagoya City University
-
Takasu Keiko
Laboratory Of Cns Pharmacology Graduate School Of Pharmaceutical Sciences Nagoya City University
-
Ono Hideki
Laboratory Of Cns Pharmacology Graduate School Of Pharmaceutical Sciences
関連論文
- A Double-blind Study of Locally Applied 2% Aspirin Ointment in the Treatment for Painful Oral Mucous Ulcers
- Taltirelin Improves Motor Ataxia Independently of Monoamine Levels in Rolling Mouse Nagoya, a Model of Spinocerebellar Atrophy(Pharmacology)
- Enhanced Wind-Up of the C-Fiber-Mediated Nociceptive Flexor Reflex Movement Following Painful Diabetic Neuropathy in Mice
- Noxious Stimuli Evoke a Biphasic Flexor Reflex Composed of Aδ-Fiber-Mediated Short-Latency and C-Fiber-Mediated Long-Latency Withdrawal Movements in Mice
- SPINAL REFLEXES IN CHINOFORM-ADMINISTERED RATS
- SPINAL REFLEXES IN RATS SUFFERED FROM MOTOR INCOORDINATION BY CHINOFORM
- Oseltamivir, an Anti-influenza Virus Drug, Produces Hypothermia in Mice : Comparison Among Oseltamivir, Zanamivir and Diclofenac(Pharmacology)
- Spinorphin, an Endogenous Inhibitor of Enkephalin-Degrading Enzymes, Potentiates Leu-Enkephalin-Induced Anti-allodynic and Antinociceptive Effects in Mice
- Protein Kinase A-Dependence of the Supraspinally Mediated Analgesic Effects of Gabapentin on Thermal and Mechanical Hypersensitivity
- The Supraspinally Mediated Analgesic Effects of Zonisamide in Mice After Peripheral Nerve Injury Are Independent of the Descending Monoaminergic System
- Glycine Transporter Blockade Ameliorates Motor Ataxia in a Mouse Model of Spinocerebellar Atrophy
- Involvement of Supraspinal Imidazoline Receptors and Descending Monoaminergic Pathways in Tizanidine-Induced Inhibition of Rat Spinal Reflexes
- GABA_B Receptors Do Not Mediate the Inhibitory Actions of Gabapentin on the Spinal Reflex in Rats
- Antinociceptive Effects of Sodium Channel-Blocking Agents on Acute Pain in Mice
- Endogenous GABA Does Not Mediate the Inhibitory Effects of Gabapentin on Spinal Reflexes in Rats
- Neuroprotection via Strychnine-Sensitive Glycine Receptors During Post-ischemic Recovery of Excitatory Synaptic Transmission in the Hippocampus
- Zonisamide Suppresses Pain Symptoms of Formalin-Induced Inflammatory and Streptozotocin-Induced Diabetic Neuropathy
- An Extended INDO-CI Theory of the General Relation between Bond Length and Bond Order
- Theory of the Relation between Bond Length and Bond Order by an Extended INDO Method
- Neuroprotection via Strychnine-Sensitive Glycine Receptors During Post-ischemic Recovery of Excitatory Synaptic Transmission in the Hippocampus
- Method for Recording Spinal Reflexes in Mice: Effects of Thyrotropin-Releasing Hormone, DOI, Tolperisone and Baclofen on Monosynaptic Spinal Reflex Potentials
- N- and L-Type Voltage-Dependent Ca^ Channels Contribute to the Generation of After-Discharges in the Spinal Ventral Root After Cessation of Noxious Mechanical Stimulation
- Effect of Spinally Administered Simvastatin on the Formalin-Induced Nociceptive Response in Mice
- Effect of Spinally Administered Simvastatin on the Formalin-Induced Nociceptive Response in Mice
- Antinociceptive Effects of Sodium Channel-Blocking Agents on Acute Pain in Mice
- Contribution of TRPV1 Receptor-Expressing Fibers to Spinal Ventral Root After-Discharges and Mechanical Hyperalgesia in a Spared Nerve Injury (SNI) Rat Model