遠心力を利用した物理環境が初期接着細胞に及ぼす影響
スポンサーリンク
概要
- 論文の詳細を見る
- 2006-10-20
著者
-
富田 直秀
京大
-
山本 浩司
京大院
-
富田 直秀
京都大学国際融合創造センター創造部門(生体・医療工学)
-
富田 直秀
京都大学 国際融合創造センター工学研究科医学研究科
-
富田 直秀
京都大学 大学院工学研究科
-
富田 直秀
日本獣医生命科学大学 獣医外科学教室
-
寺村 聡
京都大学 工学研究科
-
世宮 俊輔
京都大学 工学研究科
-
山本 浩司
京都大学 工学研究科
-
波多野 直也
京都大学 工学研究科
-
波多野 直也
京大工
関連論文
- 細胞の接着と組織形成に関する研究(S02-3 生体組織のマルチスコープメカニクス(3).細部のマルチモーダル・メカニクス,S02 生体組織のマルチスコープメカニクス)
- 321 ヘリカル構造を有するポリ乳酸チューブのピエゾ特性
- ビタミン E 添加 UHMWPE 材料の疲労特性 : 人工膝関節における lift-off を考慮して
- UNEX人工膝関節の開発
- 514 RGDSトランスジェニックフィブロイン基質に対する軟骨細胞の接着性が軟骨組織形成に及ぼす影響(OS10-3:組織再生のバイオメカニクス(3),OS10:組織再生のバイオエンジニアリング)
- 749 フィプロインスポンジにおける軟骨細胞の挙動観察と定量評価(S01-2 細胞と組織のバイオメカニクス(2)-ミクロからマクロまで-,21世紀地球環境革命の機械工学:人・マイクロナノ・エネルギー・環境)
- 748 RGDSトランスジェニックフィブロイン基質に対する軟骨細胞の接着性(S01-2 細胞と組織のバイオメカニクス(2)-ミクロからマクロまで-,21世紀地球環境革命の機械工学:人・マイクロナノ・エネルギー・環境)
- 鳥から見た医工学と,虫から見た医工学(日本のME産業発展における真の問題点と解決策)
- 骨癒合遅延症例に対する自家骨髄由来間葉系間質細胞を用いた治療法の試み
- B104 相対すべり運動下培養の負荷履歴がin vitro再生軟骨の潤滑特性に及ぼす影響(B1-1 関節1)
- B113 関節軟骨の超音波特性とその計測法の検討(B1-4 関節4)
- 人工膝関節用ビタミンE添加超高分子量ポリエチレン : Problem Orient の15年間
- 取り出されたインプラントの解析と材料学的考察
- 医療材料としてのシルク利用 (特集 シルクテクノロジー)
- 遠心力を利用した物理環境が初期接着細胞に及ぼす影響
- 磁石斥力を用いて再生軟部組織の温存を施した実験的研究 : 予備報告
- 再生医療における医工連携(医と工の立場から)(医療工学-工学による医療の再編)
- 323 トコフェロール添加UHMWPEの疲労特性向上における結晶形態の影響(GS-9:バイオマテリア,一般セッション,学術講演)
- 低荷重および関節固定が関節軟骨欠損部の自然修復に及ぼす影響
- A121 相対滑り運動下における軟骨再生(A1-4 細胞・細胞外マトリクス2)
- A120 軟骨細胞の初期接着状態と組織形成環境に関する研究(第1報)(A1-4 細胞・細胞外マトリクス2)
- 再生軟骨の組織構築に及ぼす滑り運動刺激の影響 (in vitro)
- 生体環境設計のための状態遷移モデルの作製
- 1256 細胞凝集体の作製とその機能評価(J03-2 細胞の構造と流れのメカニクス(2),J03 細胞の構造と流れのメカニクス)
- 1227 超高分子量ポリエチレンの微細力学挙動に及ぼすDL-α-Tocopherolの影響(G02-4 関節と軟骨(1),G02 バイオエンジニアリング)
- 人工膝関節用超高分子量ポリエチレンの微小領域変形挙動に関する研究
- 人工膝関節用超高分子量ポリエチレンの微小領域における変形挙動(S04-4 医療とバイオエンジニアリング,工学技術の医療応用(4),S04 医療とバイオエンジニアリング,工学技術の医療応用)
- 631 人工膝関節用 UHMWPE の微小スケールひずみ分布測定
- 221 人工膝関節用超高分子量ポリエチレン (UHMWPE) の粒界における変形測定
- ナノスケールで表面形状を制御した材料上における細胞培養
- 1252 ナノスケールで制御した材料上における細胞の接着挙動(J03-1 細胞の構造と流れのメカニクス(1),J03 細胞の構造と流れのメカニクス)
- 816 表面形状をナノスケールで制御した材料上における細胞の接着挙動観察(GS-2 生体材料,研究発表講演)
- 240 表面形状をナノスケールで制御した材料上における細胞の接着挙動(OS1-13 : 生体マイクロ・ナノ新技術(2),マイクロ・ナノバイオメカニクス)
- 再生軟骨の摩擦・摩耗特性
- J0401-5-1 人工膝関節用UHMWPEの摩擦特性に及ぼすVitamin E添加の影響(生体材料およびその表面改質材(5))
- RGDSトランスジェニックフィブロイン基質に対する軟骨細胞の接着性と組織形成
- 1245 温度環境及び圧力環境設定型培養装置の開発(G02-7 細胞,G02 バイオエンジニアリング)
- 1253 遠心力を利用した物理環境が初期細胞接着に及ぼす影響(J03-1 細胞の構造と流れのメカニクス(1),J03 細胞の構造と流れのメカニクス)
- 815 幹細胞を用いた軟骨再生の環境設計(第3報)(GS-2 生体材料,研究発表講演)
- 441 骨・軟骨欠損の修復における生体環境設計(GS-13 : 骨・軟骨(2))
- 222 幹細胞を用いた軟骨再生の環境設計(第2報)(OS1-07 : ティッシュ・エンジニアリング,マイクロ・ナノバイオメカニクス)
- 再生軟骨の動的荷重変化に対する潤滑特性(S02-3 生体組織のマルチスコープメカニクス(3).細部のマルチモーダル・メカニクス,S02 生体組織のマルチスコープメカニクス)
- 生体内環境設計のためのCA法を用いたES細胞-軟骨再生シミュレーションモデル(S02-1 生体組織のマルチスコープメカニクス(1).モデリングとメカニクス,S02 生体組織のマルチスコープメカニクス)
- 221 再生軟骨を用いた潤滑機能獲得に関する研究
- B103 フィブロインを用いた再生軟骨の潤滑特性に及ぼす接触圧の影響
- 関節軟骨の測定と潤滑機能評価(第4部 試験方法の開発・評価・標準化,21世紀の医療機器 Tissue Engineering-開発と評価,医療機器フォーラム設立記念シンポジウム)
- 853 人工膝関節用UHMWPEの凝着に及ぼすVitamin E添加の影響(G02-4 バイオエンジニアリング(4),21世紀地球環境革命の機械工学:人・マイクロナノ・エネルギー・環境)
- 523 人工関節用 UHMWPE の添加物による耐酸化性向上効果
- J0401-5-6 水和潤滑を考慮した再生軟骨評価法(生体材料およびその表面改質材(5))
- トポロジー最適化と形状最適化に基づくコンプライアントメカニズムの多段階創成設計法
- トポロジー最適化と形状最適化に基づいたコンプライアントメカニズムの多段階創成設計法
- コンプライアントメカニズム設計のための多段階創成設計法(J20-3 デジタルエンジニアリングによる製品開発革新(3),J20 デジタルエンジニアリングによる製品開発革新)
- 軟骨細胞に及ぼす超音波照射の影響(S02-3 生体組織のマルチスコープメカニクス(3).細部のマルチモーダル・メカニクス,S02 生体組織のマルチスコープメカニクス)
- 431 ビタミンEの添加により抗酸化能を付与した長寿命型人工関節用UHMWPEの摩耗特性(GS-11 : 関節と潤滑・摩耗(2))
- 0301 MPCグラフト表面を用いた軟骨水和潤滑の評価(OS11:軟骨の形態と機能)
- 骨髄間質細胞に対するフルバスタチンの骨形成促進効果
- S0201-3-2 RGDS発現フィブロイン基質に対する軟骨細胞の接着性(マイクロ・ナノバイオメカニクス:細胞生物学への接近(3)界面と接着)
- 2318 粉粒体の粒径識別アルゴリズムに見る触覚受容器の機能(GS 一般講演)
- 813 Vitamin E(D,L-α-Tocopherol)を添加した超高分子量ポリエチレンの人工関節部材としての特性(GS-2 生体材料,研究発表講演)
- 0930 Vitamin E混合UHMWPEの摩擦特性に及ぼす血清蛋白と荷重の影響(OS20-1:人工関節とバイオエンジニアリング1)
- 0306 遺伝子改変によりフィブロイン中に導入したRGDが軟骨細胞接着に及ぼす相互効果(OS11:軟骨の形態と機能)
- 表面波を用いた関節軟骨の異方性測定 (超音波)
- 515 超音波による再生軟骨の弾性係数推定法 : 第1報:アガロースゲルを用いた基礎検討(OS10-3:組織再生のバイオメカニクス(3),OS10:組織再生のバイオエンジニアリング)
- 1E15 直並列リンクモデルに基づく等方性黒鉛のぜい性破壊曲線の解析
- K-0913 鉛直振動を用いた2成分粉体混合 : 粉体挙動・混合状態に対する粒子径の影響(G04-3 破壊ほか)(G04 機械材料・材料加工部門一般講演)
- 812 ビタミンE添加超高分量ポリエチレンの耐疲労特性と生体内変化(OS-3 バイオ・マイクロ精密機器のトライボロジー)
- 205 人工膝関節用超高分子量ポリエチレンのデラミネーション破壊に及ぼす諸因子の影響
- 223 人工膝関節用 UHMWPE の粒界にみられる変形の観察
- 再生軟骨の潤滑特性
- 硫酸化フィブロインスポンジを用いた軟骨再生の試み
- 329 培養軟骨の成熟に及ぼす振動刺激の影響
- 324 再生軟骨の潤滑機構
- 軟骨の力学特性におよぼす細胞外基質の影響(生体材料のバイオエンジニアリング)
- 人工膝関節用 Vitamin E 添加超高分子量ポリエチレンの耐酸化性
- 人工膝関節用超高分子量ポリエチレンの微小領域における結晶化度(S04-4 医療とバイオエンジニアリング,工学技術の医療応用(4),S04 医療とバイオエンジニアリング,工学技術の医療応用)
- 330 再生軟骨の組織内構造構築に与える運動刺激の影響 : 屈曲運動群と平行運動群の比較
- 講座 ダイヤモンドをよく知るために(16)バイオエンジニアリングの基礎(2)生体材料設計と生体環境設計
- 最近の生体材料設計に関して
- 533 Total Joint Regeneration System による関節の再生 : フィブロインスポンジを用いた軟骨再生(生体・医療材料-V)(生体・医療材料分野の技術開発と将来展望)(オーガナイスドセッション11)
- 247 軟骨再生過程における力学特性の測定
- 4.3.バイオメディカルエンジニアリング・ライフサポート工学(4.バイオエンジニアリング)(機械工学年鑑)
- 動揺測定試験装置を使用した犬大腿脛関節の前方安定性の定量的評価
- RGDSトランスジェニックフィブロイン基質に対する軟骨細胞の接着性と組織形成
- ビタミンEの抗酸化作用がデラミネーションを含むUHMWPEの疲労特性の向上に及ぼす影響
- 222 ビタミン E 添加 UHMWPE の摩耗・疲労特性向上と分子構造変化
- 再生用 scaffold-軟骨細胞系ミクロ有限要素モデルの構築
- 1228 トコフェロール添加によるUHMWPEの分子構造および機械的特性の変化(G02-4 関節と軟骨(1),G02 バイオエンジニアリング)
- 生体吸収性材料の実用化と生体環境設計(乳酸が切り拓くエコトピア社会)
- 人工関節と関節治療
- 再生用足場内軟骨細胞の変形挙動解析(G02-2 細胞,G02 バイオエンジニアリング部門)
- 1pS1-PM4 生体吸収性材料の実用化と生体環境設計(乳酸が切り拓くエコトピア社会,シンポジウム)
- 生体材料と生体内環境設計
- J0204-2-1 フィブロイン中に導入したRGD配列が軟骨細胞の接着力に及ぼす影響([J0204-2]バイオトライボロジー(2))
- J0204-1-3 関節軟骨超音波評価法における探査子の角度推定法におよぼす反射面表面性状の影響([J0204-1]バイオトライボロジー(1))
- 9C-04 RGD導入フィブロイン平面に播種された軟骨細胞の低出力パルス超音波刺激に対する応答(OS-10 ティッシュエンジニアリング(1))
- A209 軟骨分化過程におけるATDC5細胞の接着力挙動(A2-2 細胞工学・マイクロバイオメカニクス2)
- Vitamin E 添加UHMWPEの生体内における力学特性変化
- UHMWPEの内部クラックに及ぼす摺動軌跡の影響(第2報)
- 人工膝関節用摺動部材の耐久性向上 : ビタミンE混合UHMWPE「BLEND-E」の実用化
- 7F34 軟骨細胞凝集過程の定量評価と培養材料平面が細胞凝集にあたえる影響の考察(OS20 組織再生とバイオマテリアル)