Aminoguanidine Protects Against Intracranial Hypertension and Cerebral Ischemic Injury in Experimental Heatstroke
スポンサーリンク
概要
- 論文の詳細を見る
The aim of the present study was to ascertain whether aminoguanidine attenuated intracranial hypertension and cerebral ischemic injury in experimental heatstroke. Urethane-anesthetized rats were exposed to heat stress (ambient temperature of 43°C) to induce heatstroke. Control rats were exposed to 24°C. Mean arterial pressure, cerebral perfusion pressure, and cerebral blood flow after the onset of heatstroke were all significantly lower than in control rats. However, colonic temperature, intracranial pressure, heart rate, cerebral inducible nitric oxide synthase (iNOS)-dependent NO, and neuronal damage score were greater after the onset of heatstroke. Aminoguanidine (30 μmol/kg, i.v.; 30 min before the start of heat exposure) pretreatment significantly attenuated the heatstroke-induced hyperthermia, arterial hypotension, intracranial hypertension, cerebral ischemia and neuronal damage, and increased iNOS-dependent NO formation in the brain. The extracellular concentrations of ischemic (e.g., glutamate and lactate/pyruvate ratio) and damage (e.g., glycerol) markers in the hypothalamus were also increased after the onset of heatstroke. Aminoguanidine pretreatment significantly attenuated the increase in hypothalamic ischemia and damage markers associated with heatstroke. Delaying onset of aminoguanidine administration (i.e., 0 or 30 min after the start of heat exposure) reduced the preventive efficiency on heatstroke-induced hyperthermia, arterial hypotension, intracranial hypertension, cerebral ischemia, and increased iNOS-dependent NO formation in brain. These results suggest that aminoguanidine protects against heatstroke-induced intracranial hypertension and cerebral ischemic injury by inhibition of cerebral iNOS-dependent NO production.
- 社団法人 日本薬理学会の論文
- 2004-05-20
著者
-
LIN Mao-Tsun
Department of Medical Research, Chi Mei Medical Center
-
Lee Chin-cheng
Department Of Pathology And Laboratory Medicine Shin-kong Memorial Hospital
-
Lin Mao-tsun
Departmen T Of Physiology National Yang-ming University
-
Lin Mao-tsun
Department Of Medical Research Chi-mei Medical Center
-
Lee Chin-cheng
Dep. Of Pathology And Lab. Medicine Shin-kong Memorial Hospital
-
CHANG Ching-Ping
Institute of Physiology, National Yang-Ming University Medical School
-
CHEN Sheng-Hsien
Institute of Clinical Medicine, College of Medicine, National Cheng-Kung University
-
Chang C‐p
Dep. Of Biotechnology Southern Taiwan Univ. Of Technol. Taiwan
-
Lee Chin-cheng
Department Of Pathology And Laboratory Medicine Shin Kong Wu-ho-su Memorial Hospital
-
Lee Chin-cheng
Department Of Pathology And Laboratory Medicine Shin Kong Wu Ho Su Memorial Hospital
-
Lin Mao-Tsun
Department of Medical Research, Chi-Mei Medical Center
関連論文
- Aspirin May Exert Its Antipyresis by Inhibiting the N-Methyl-D-aspartate Receptor-Dependent Hydroxyl Radical Pathways in the Hypothalamus
- Lipopolysaccharide- and Glutamate-Induced Hypothalamic Hydroxyl Radical Elevation and Fever Can Be Suppressed by N-Methyl-D-aspartate-Receptor Antagonists
- Aspirin May Exert Its Antipyresis by Inhibiting the N-Methyl-D-aspartate Receptor-Dependent Hydroxyl Radical Pathways in the Hypothalamus
- Platonin, a Cyanine Photosensitizing Dye, Inhibits Pyrogen Release and Results in Antipyresis
- Blocking NF-kB Activation May Be an Effective Strategy in the Fever Therapy
- 廃用豚の脳における結節性多発性動脈炎の高発生(短報)(病理学)
- 犬の頭蓋内穎粒細胞腫の一例
- Adenocarcinomas arising from primary retroperitoneal teratoma in an adult female patient
- Shengmai San, a Chinese Herbal Medicine Protects Against Rat Heat Stroke by Reducing Inflammatory Cytokines and Nitric Oxide Formation
- Chinese Herbal Medicine, Shengmai San, Is Effective for Improving Circulatory Shock and Oxidative Damage in the Brain During Heatstroke
- Cyclooxygenase Inhibitors Attenuate Augmented Glutamate Release in Organum Vasculosum Laminae Terminalis and Fever Induced by Staphylococcal Enterotoxin A
- Pyrogens Enhance β-Endorphin Release in Hypothalamus and Trigger Fever That Can Be Attenuated by Buprenorphine
- Selective Inhibition of Inducible Nitric Oxide Synthase Attenuates Renal Ischemia and Damage in Experimental Heatstroke
- Catecholaminergic Mechanisms-Mediated Hypothermia Induced by Magnolol in Rats
- Hypotensive and Bradycardic Effects of dl - Tetrahydropalmatine Mediated by Decrease in Hypothalamic Serotonin Release in the Rat
- Aminoguanidine Protects Against Intracranial Hypertension and Cerebral Ischemic Injury in Experimental Heatstroke
- Naltrexone Protects Against Hypotension, Hyperthermia, and β-Endorphin Overproduction During Heatstroke in the Rat
- Prior Antagonism of Endothelin-1A Receptors Alleviates Circulatory Shock and Cerebral Ischemia During Rat Heatstroke
- Human Umbilical Cord Blood-Derived CD34^+ Cells Can Be Used as a Prophylactic Agent for Experimental Heatstroke
- Puerarin Acts Through Brain Serotonergic Mechanisms to Induce Thermal Effects
- Effects of Chinese herb, Huang Chin (Scutellaria baicalensis George) on thermoregulation in rats.