Liquid-Crystal Blazed grating with Spatially Distributed Four-Level Twisted Nematic Domains
スポンサーリンク
概要
- 論文の詳細を見る
A liquid crystal (LC) cell with multiple twisted nematic domains is fabricated by rubbing alignment films along different directions and is applied to an LC four-level blazed grating. It is theoretically derived that the four-level stepwise phase profile is achieved under optimum LC molecular orientation conditions. The LC four-level blazed grating is obtained by microrubbing using a tiny stylus with a curvature radius of 25 μm. The electrically controllable diffraction efficiency and unique polarization-splitting properties are revealed; namely, the diffraction efficiency can reach approximately 0.8 and the polarization directions of $\pm1$st-order diffractions are orthogonal to each other.
- Japan Society of Applied Physicsの論文
- 2004-07-01
著者
-
Nose Toshiaki
Department Of Electrical And Electronic Engineering Akita University
-
Honma Michinori
Department Of Electrical And Electronic Engineering Akita University
関連論文
- Liquid Crystal Lens With Spherical Electrode
- 3A16 Study of a Novel Liquid Crystal Lens
- Improvement of Decay Properties of a Liquid Crystal Microlens with a Divided Electrode Structure
- Liquid Crystal Display Devices with Slit-Patterned Electrode Structures
- Molecular Orientations and Optical Transmission Properties of Liquid Crystal Cells with Slit-Patterned Electrodes
- Diffraction and Polarization Properties of a Liquid Crystal Grating
- Optical Haar Wavelet Transforms with Liquid Crystal Elements
- Optical Performance of Liquid Crystal Cells with Asymmetric Slit-Patterned Electrodes in Various Applied Field Configurations
- The High-Field Cured Polymer Networks in Nematic Liquid Crystals
- Application of a Circularly Homogeneously Aligned Liquid-Crystal Cell to Real-Time Measurements of Twist Angles in twisted-Nematic Liquid-Crystal Cells
- Polarization-Independent Optical Properties of Liquid Crystal Polarization-Converting Devices
- Optimization of Device Parameters for Minimizing Spherical Aberration and Astigmatism in Liquid Crystal Microlenses
- Enhancement of Numerical Aperture of Liquid Crystal Microlenses Using a Stacked Electrode Structure
- Optical Haar Wavelet for Extracting Edge Features along Arbitrary Directions
- Optical Properties of Anamorphic Liquid Crystal Microlenses and Their Application for Laser Diode Collimation
- Influence of Elastic Constants on the Optical Properties of Liquid Crystal Microlenses
- Liquid-Crystal Reflective Beam Deflector with Microscale Alignment Pattern
- Polarization-Independent Liquid-Crystal Grating with Microscale Alignment Pattern(Electronic Displays)
- Light Scattering Properties in a Homeotropic-Aligned Liquid Crystal Microlens Array
- A Radial Molecular Orientation Using a Flow-Induced Aligning Method in a Nematic Liquid Crystal Cell
- Millimeter-Wave Transmission Properties of Nematic Liquid-Crystal Cells with a Grating-Patterned Electrode Structure
- Optical Properties of a Polymer-Stabilized Liquid Crystal Microlens
- Visualization of Molecular Orientation by Using a UV-Curable Liquid Crystal
- Optical Properties of a Polarization Converting Device Using a Nematic Liquid Crystal Cell
- A Liquid Crystal Microlens with Hole-Patterned Electrodes on Both Substrates
- Optical Properties of a Liquid Crystal Microlens with a Symmetric Electrode Structure
- Memory Effects in Nematic Liquid Crystals by a Surface Molecular Reorientation
- Liquid-Crystal Fresnel Zone Plate Fabricated by Microrubbing
- Light Scattering Effects in a Randomly Arranged Liquid Crystal Microlens Array
- Novel Liquid Crystal Grating with a Relief Structure by a Simple UV Irradiation Process
- A Double-Layer Polymer/Liquid-Crystal Grating with Polarization Direction-Independent Diffraction Properties
- Optical and Electrical Logic Operations by a Liquid Crystal Bistable Optical Device
- Improvement of Optical Properties and Beam Steering Functions in a Liquid Crystal Microlens with an Extra Controlling Electrode by a Planar Structure
- Flip-Flop and Oscillating Behavior Obtained with Serial Connection of Liquid Crystal Bistable Optical Device Pixels
- Liquid-Crystal Blazed Gratings with Spatially Distributed Pretilt Angle
- Diffraction Efficiency Improvement in Liquid Crystal Blazed Gratings with Spatially Distributed Hybrid Orientation Domains
- Rotational Behavior of Stripe Domains Appearing in Hybrid Aligned Chiral Nematic Liquid Crystal Cells
- Fundamental Properties of Novel Design Microstrip Line Type of Liquid Crystal Phase Shifter in Microwave Region
- Improvement of Aberration Properties of Liquid Crystal Microlenses using the Stacked Electrode Structure
- Polymer Stabilized Liquid Crystal Grating Consisting of Periodic Reverse Twist Domains
- Dependence of Optical Properties on the Device and Material Parameters in Liquid Crystal Microlenses
- Oblique Extraction of Polarized Light from Light-Emitting Liquid Crystal Cells Doped with a Fluorescent Dye
- Liquid-Crystal Blazed grating with Spatially Distributed Four-Level Twisted Nematic Domains