血液および血管のレオロジー
スポンサーリンク
概要
- 論文の詳細を見る
Hereunder is presented a resume of the authors recent work on hemorheology.<BR>The problem concerns in the first place the influence of the plasmatic zone upon the relationship of the quantity of blood and its pressure flowing through minute vessels. When blood is regarded as a Bingham body with plastic viscosity η<SUB>B</SUB> and yield value f<SUB>B</SUB>, the pressure-flow relationship is given in eq. (6) as P>p<SUB>B</SUB>/γ and in eq. (8) as P<p<SUB>B</SUB>/γ, where ξ=p<SUB>B</SUB>/P, p<SUB>B</SUB>=2Lf<SUB>B</SUB>/R and γ=1-(δ/R). Here δ is the thickness of the plasmatic zone, R is the radius of the vessel, and P is the difference in pressure between two cross-sections at distance L. Similar pressure-flow relationships (11) and (13) were also obtained of the blood obeying Cassons equation with Casson viscosity η<SUB>c</SUB> and Casson yield value f<SUB>c</SUB>.<BR>The problem concerns in the second place the flow behavior of blood in capillaries with permeable walls. Blood is regarded, for simplicity, as an incompressible Newtonian fluid with viscosity η, and an approximate solution of Navier-Stokes equation was obtained under the boundary conditions u=0 and v=k(p-α) at the wall. Here u and v are respectively the axial and radial component of velocity, p is the hydrostatic pressure, k is the permeability coefficient and α is a constant. Starlings law was assumed with regard to filtration and reabsorption of water. The streamlines are shown in Fig. 9. It is shown that the flow Q becomes minimum at a distance LΔα/Δp from the arterial end of the capillary, where L is the length of the capillary, Δα=p<SUB>a</SUB>-α and Δp=p<SUB>a</SUB>-p<SUB>v</SUB>. Here p<SUB>a</SUB> and p<SUB>v</SUB> are respectively the pressure at the arterial and venous end of the capillary. In case where filtration and reabsorption of water balance, Δα/Δp must be equal to 1/2, that is, α=(p<SUB>a</SUB>+p<SUB>v</SUB>)/2.<BR>The problem concerns lastly the circumferential tension T in a thick-walled blood vessel. The tension is given in T=p<SUB>1</SUB>r<SUB>1</SUB>-p<SUB>2</SUB>r<SUB>2</SUB>, where r<SUB>1</SUB> and r<SUB>2</SUB> are respectively the inner and the outer radius of the vessel under the internal pressure p<SUB>1</SUB> and the external pressure p<SUB>2</SUB>. The formula holds quite generally, irrespective of whether the wall is homogeneous or inhomogeneous, whether the wall is isotropic or anisotropic, whether the elasticity of the wall is Hookean or nonlinear. The distribution of the circumferential stress τ in the wall with Hookean elasticity was discussed in detail on the basis of classical theory of elasticity. It is shown that τ is not always positive throughout the wall even if p<SUB>1</SUB> is greater than p<SUB>2</SUB>. Three cases actually occur: (a) τ is always positive throughout the wall, (b) τ is positive in the inner region, while it is negative in the outer region, and (c) τ is always negative throughout the wall. Introducing non-dimensional parameters difined by k=p<SUB>1</SUB>/p<SUB>2</SUB> and s=r<SUB>2</SUB>/r<SUB>1</SUB>, sk-plane (s>1, k>1) can be divided by two curves k=(1+s<SUP>2</SUP>)/2 and k=2s<SUP>2</SUP>/(1+s<SUP>2</SUP>) into three regions A, B and C which correspond to the cases a, b and c, respectively. It is clear that the circumferential tension T is not always positive in more general cases.
- 社団法人 日本材料学会の論文
著者
関連論文
- 平行板プラストメーターによる可塑性脂肪の粘弾性 : 分散型のレオロジー
- 平行板プラストメーターによる粘弾性の研究 : 高分子
- 毛細血管中での血液流動
- 粉体内の圧力分布の理論
- 非ニュートン液体に対する二重円すい型レオメータの理論
- 非ニュートン液体に対する円すい平板粘度計の理論
- 円錐管内における非ニュートン流動
- 高分子材料雑感(創立20周年記念号 学術展望)
- 高分子材料雑感 (学術展望(創立20周年記念号))
- 透過壁を持つ血管中の血液の流動の理論的研究(レオロジー 特集)
- 血液および血管のレオロジー(レオロジー 特集)
- レオロジー特集号6号の刊行にあたって
- Poiseuille 流中における円孤状粒子のRadial Migration (II)
- 材料物性工学 : 工業材料の科学, 金丸 競著, 材料工業化学講座32, 1900円, 1970年, 共立出版
- 円すい管内における非ニュートン流動の一般理論
- ヘモレオロジーに関する二,三の理論的研究
- わずかな曲率をもつ棒状分子溶液の固有粘度
- 二,三のレオメータによるCasson の式に従う物質のパラメータの決定法
- 粘度計の測定原理に関する最近の研究
- (1)レオロジーの展望
- ビンガム物体に対する平行板プラストメーターの理論 : 分散系のレオロジー,その他
- 円錐系ノズル内での定常粘性流動 : 分散系のレオロジー,その他
- (2) 生命の起源(第1回コスモ化学部会講演会要旨,学会記事)
- 平行板プラストメーターの理論 : レオロジー一般
- 透過壁を持つ血管中の血液の流動の理論的研究
- 粉体内の圧力分布の理論
- 血液および血管のレオロジー
- Poiseuille流中における円孤状粒子のRadial migration (レオロジー(特集))
- タイトル無し
- 血液のレオロジー-5-(高分子教室-25-)
- 血液のレオロジー-4-(高分子教室-24-)
- 高分子物理の歴史 (現代の高分子第1部高分子とは何か(特集))