Gradual Downregulation of Protein Expression of the Partner GABABR2 Subunit During Postnatal Brain Development in Mice Defective of GABABR1 Subunit
スポンサーリンク
概要
- 論文の詳細を見る
We have previously shown the functional expression of GABAB receptors (GABABR) composed of GABABR1 and GABABR2 subunits with ability to promote proliferation and neuronal differentiation in cultured neural progenitor cells (NPC) isolated from embryonic mouse brains. In this study, we evaluated postnatal changes in the expression profiles of different markers for progenitor, neuronal, astroglial, and microglial cells in brains of GABABR1-null mice. Consistent with undifferentiated murine NPC cultured with epidermal growth factor, a significant and selective decrease was seen in mRNA expression of the proneural gene Mash1 in brains of GABABR1-null mice at 1 day after birth. The expression of several NPC marker proteins was similarly decreased in brains of both wild-type and GABABR1-null mice from 1 to 7 days after birth, while slight changes were induced in both mRNA and proteins for neuronal, astroglial, and microglial markers between wild-type and GABABR1-null mouse brains within this developmental stage. In particular discrete brain structures of adult GABABR1-null mice at 56 days after birth, a significant decrease was seen in neuronal marker protein levels along with a significant increase in both astroglial and microglial marker protein expression. Although no significant difference was found in mRNA expression of the partner GABABR2 subunit between wild-type and GABABR1-null mouse brains, GABABR2 subunit protein levels were gradually declined during postnatal development within 56 days after birth in GABABR1-null mouse brains. These results suggest that GABABR2 protein levels are closely correlated with the partner subunit GABABR1 protein levels in mouse brains during postnatal development in vivo.
著者
-
TAKARADA Takeshi
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Gradu
-
YONEDA Yukio
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Gradu
-
NAKAMICHI Noritaka
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Gradu
-
Fukui Masaki
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Gradu
-
Ozawa Shusuke
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Gradu
-
Nakazato Ryota
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Gradu
-
Yoneda Yukio
Laboratory Of Molecular Pharmacology Division Of Pharmaceutical Sciences Kanazawa University Graduat
-
Nakamichi Noritaka
Laboratory Of Molecular Pharmacology Division Of Pharmaceutical Sciences Kanazawa University Graduat
-
Takarada Takeshi
Laboratory Of Molecular Pharmacology Division Of Pharmaceutical Sciences Kanazawa University Graduat
-
Nakamichi Noritaka
Laboratory Of Molecular Pharmacology Division Of Pharmaceutical Sciences Kanazawa University Graduat
-
Ozawa Shusuke
Laboratory Of Molecular Pharmacology Division Of Pharmaceutical Sciences Kanazawa University Graduat
-
Fukui Masaki
Laboratory Of Molecular Pharmacology Division Of Pharmaceutical Sciences Kanazawa University Graduat
-
Nakazato Ryota
Laboratory Of Molecular Pharmacology Division Of Pharmaceutical Sciences Kanazawa University Graduat
-
Yoneda Yukio
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Japan
-
Nakazato Ryota
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Japan
-
Ozawa Shusuke
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Japan
-
Fukui Masaki
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Japan
-
Takarada Takeshi
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Japan
-
Nakamichi Noritaka
Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Japan
関連論文
- Inhibition by 2-Methoxy-4-ethylphenol of Ca2+ Influx Through Acquired and Native N-Methyl-D-aspartate–Receptor Channels
- Predominant Promotion by Tacrolimus of Chondrogenic Differentiation to Proliferating Chondrocytes
- Neurogenesis Mediated by γ-Aminobutyric Acid and Glutamate Signaling
- Gradual downregulation of protein expression of the partner GABA[B]R2 subunit during postnatal brain development in mice defective of GABA[B]R1 subunit
- Gradual Downregulation of Protein Expression of the Partner GABABR2 Subunit During Postnatal Brain Development in Mice Defective of GABABR1 Subunit
- Neonatal Phencyclidine Treatment in Mice Induces Behavioral, Histological and Neurochemical Abnormalities in Adulthood
- Functional Proteins Involved in Regulation of Intracellular Ca^ for Drug Development : Preface
- Increased GABA Transport Activity in Rat Calvarial Osteoblasts Cultured under Hyperglycemic Conditions(Pharmacology)
- nrf2 Expressed by Bone(International Symposium of Maxillofacial and Oral Regenerative Biology in Okayama 2005)
- Release of Endogenous Glutamate by AMPA Receptors Expressed in Cultured Rat Costal Chondrocytes(Pharmacology)
- Glutamate Signaling System in Bone
- Pharmacological Topics of Bone Metabolism : Glutamate as a Signal Mediator in Bone
- Functional Proteins Involved in Regulation of Intracellular Ca^ for Drug Development : Desensitization of N-Methyl-D-aspartate Receptor Channels
- Transcriptional Regulation of Neuronal Genes and Its Effect on Neural Functions : Gene Expression in Response to Static Magnetism in Cultured Rat Hippocampal Neurons
- Neurogenesis Mediated by GABA and Glutamate Signaling
- Ifenprodil severely retards P19 neuronal differentiation via polyamine site of NR2B subunit on NMDA receptors
- A Negative Correlation Between Expression Profiles of Runt-Related Transcription Factor-2 and Cystine/Glutamate Antiporter xCT Subunit in Ovariectomized Mouse Bone
- A Tale of Early Response Genes
- Functional Proteins Involved in Regulation of Intracellular Ca2+ for Drug Development: Desensitization of N-Methyl-D-aspartate Receptor Channels
- Selective Upregulation of Per1 mRNA Expression by ATP Through Activation of P2X7 Purinergic Receptors Expressed in Microglial Cells
- Possible Involvement of Glutamatergic Signaling Machineries in Pathophysiology of Rheumatoid Arthritis
- Inhibition by 2-Methoxy-4-ethylphenol of Ca^ Influx Through Acquired and Native N-Methyl-D-aspartate-Receptor Channels
- Selective Downregulation of N-methyl-D-aspartate Receptor (NMDAR) rather than Non-NMDAR Subunits in Ipsilateral Cerebral Hemispheres in Rats with Middle Cerebral Artery Occlusion
- Gradual Downregulation of Protein Expression of the Partner GABA_BR2 Subunit During Postnatal Brain Development in Mice Defective of GABA_BR1 Subunit
- Possible Involvement of Glutamatergic Signaling Machineries in Pathophysiology of Rheumatoid Arthritis
- Selective Upregulation of Per1 mRNA Expression by ATP Through Activation of P2X7 Purinergic Receptors Expressed in Microglial Cells
- A Negative Correlation Between Expression Profiles of Runt-Related Transcription Factor-2 and Cystine/Glutamate Antiporter xCT Subunit in Ovariectomized Mouse Bone
- Artificial Orchestration of Functional NMDAR Channels in HEK293 Cells
- Amelioration by the Natural Polyamine Spermine of Cartilage and Bone Destruction in Rats With Collagen-Induced Arthritis
- Delayed Mitochondrial Membrane Potential Disruption by ATP in Cultured Rat Hippocampal Neurons Exposed to N-Methyl-D-Aspartate
- Possible Modulation of Process Extension by N-Methyl-D-aspartate Receptor Expressed in Osteocytic MLO-Y4 Cells
- In Vivo and In Vitro Treatment With Edaravone Promotes Proliferation of Neural Progenitor Cells Generated Following Neuronal Loss in the Mouse Dentate Gyrus
- A Negative Correlation Between Per1 and Sox6 Expression During Chondrogenic Differentiation in Pre-chondrocytic ATDC5 Cells
- Prevention of Bone Loss after Ovariectomy in Mice with Preferential Overexpression of the Transcription Factor Paired Box-5 in Osteoblasts
- In Vivo and In Vitro Treatment With Edaravone Promotes Proliferation of Neural Progenitor Cells Generated Following Neuronal Loss in the Mouse Dentate Gyrus
- A Negative Correlation Between Per1 and Sox6 Expression During Chondrogenic Differentiation in Pre-chondrocytic ATDC5 Cells