Low NOx Combustion of DME by Means of Flue Gas Recirculation
スポンサーリンク
概要
- 論文の詳細を見る
This study focuses on the fundamental characteristics of DME (Dimethyl Ether) combustion aiming at development of low-NOx combustion technology with flue gas recirculation, FGR. The flue gas is recirculated into the combustion chamber to reduce the oxygen concentration and to suppress the combustion gas temperature, so that NOx emission is significantly reduced. The fuel gas recirculation at high mixing ratio, however, may lead to unstable combustion of conventional fuels, methane or city gas. On the other hand, DME has very high potential of applicability for the flue gas recirculation even at high mixing ratio because of its high burning velocity and low ignition temperature. Combustion tests were conducted with laboratory-scale 11kW combustor. The maximum FGR ratio is 85% at the initial air ratio of 1.5 with preheated diluted air about 600K. The NOx emission reduced to 13ppm at 0%-O2, which corresponds to about 9% of NOx emission at FGR=0%. The stable combustion is sustained even in the low oxygen concentration by preheating diluted-air up to near the auto-ignition temperature of DME. Finally, the effect of the flue gas recirculation on the NOx and CO emission is discussed with reference to the industrial-scale water-tube boilers.
著者
-
MATSUMOTO Ryosuke
Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University
-
Ozawa Mamoru
Department Of Mechanical Engineering Kansai University
-
Matsumoto Ryosuke
Department of Mechanical Engineering, Kansai University
-
IIO Takenori
Department of Mechanical Engineering, Kansai University
-
TERADA Shinya
Department of Mechanical Engineering, Kansai University
関連論文
- Mechanical Properties of Amorphous Metal with Dispersed Nanocrystalline Particles : Molecular Dynamics Study on Crystal Volume Fraction and Size Effects
- Low NOx Combustion of DME by Means of Flue Gas Recirculation
- Development of Low-NOx DME Multi-Port Burner(International Conferences on Power and Energy)
- Development of Tube-Nested Combustor with Transpiration Air Supply
- Heat Transfer Characteristics of an Endwall with Single Row of Oblique Pin Fins
- Effect of Pin Fin Arrangement on Endwall Heat Transfer
- Characteristics of Bed-Material Behavior and Heat Transfer around Vertical Tube Banks in a Fluidized Bed
- Characteristics of Heat Transfer and Bed Material Movement around Vertical Tube in Fluidized Bed
- B205 DISTRIBUTION OF VOID FRACTION AND HEAT TRANSFER COEFFICIENT AROUND VERTICAL TUBE BANKS IN FLUIDIZED BED
- Dryout in a Boiling Channel under Oscillatory Flow Condition
- E310 HEAT TRANSFER CHARACHTERISTICS OF PARTICLE CONVECTION IN FLUIDIZED-BED(Boiler-2)
- DME-Fired Water-Tube Boiler : A R&D Study(International Conferences on Power and Energy)
- Development of Low-NO_x Emission DME (Dimethyl Ether) Combustor(International Conferences on Power and Energy System)
- Diffusion Combustion in a Tube-Nested Combustor(International Conferences on Power and Energy System)
- D207 DEVELOPMENT OF LOW-NOx EMISSION DME (DIMETHYL ETHER) COMBUSTOR
- D201 DIFFUSION COMBUSTION IN A TUBE-NESTED COMBUSTOR
- A116 CONVECTIVE HEAT TRANSFER AND FLOW PATTERN IN A SIMULATED TUBE-NESTED COMBUSTOR(Advanced thermal system analysis-2)
- A PATTERN DYNAMICS APPROACH TO TWO-PHASE FLOW DYNAMICS
- Structure of Recirculation Flow Induced by an Annular Jet
- I101 FLOW PATTERN TRANSITION AND VOID FRACTION BEHAVIOR IN ADIABATIC OSCILLATORY TWO-PHASE FLOW(Multiphase flow dynamics/non-linearity)
- Stack Temperature Distribution in an Acoustic-Resonance Tube
- Pressure drop of a Supercritical Fluid Flowing Through a Heated Horizontal Pipe
- Experimental Study on Natural Convection and Heat Transfer in an Inclined Rectangular Enclosure
- C304 Mixed convection in a rectangular slender channel(Mixed convection)
- Diffusion in Microchannel Analyzed by Chemiluminescence
- Activation Free Energy of Nucleation of a Dislocation Pair in Magnesium
- Molecular Dynamics Analyses of Deformation Behavior of Long-Period-Stacking-Ordered Structures