Effects on N-Glycosylation and Inositol on the ER Stress Response in Yeast Saccharomyces cerevisiae
スポンサーリンク
概要
- 論文の詳細を見る
IRE1 and HAC1 are essential for the unfolded protein response in the endoplasmic reticulum (ER). IRE1- and HAC1-disruptants require high concentrations of inositol for its normal growth. The ALG6, ALG8, and ALG10 genes encode the glucosyltransferases necessary for the completion of the synthesis of the lipid-linked oligosaccharide used for the asparagine-linked glycosylation of proteins in that order. Here we show that, given a combination of the hac1 defect with a disruption of ALG6, ALG8, and ALG10, no strains grow on inositol-free medium. However, the growth defect of the hac1-alg10 double disrupted was partially, but significantly, suppressed by the addition of inositol to the medium. These results indicate that inositol, according to the numbers of glucose residues in the oligosaccharide, plays an important role in the stress response and quality control of glycoproteins in the ER.
- 2005-07-23
著者
-
Uchimura Seiichi
Department Of Bioscience And Bioinformatics Faculty Of Computer Science And Systems Engineering Kyus
-
Sugiyama Minetaka
Department Of Bioscience And Bioinformatics Faculty Of Computer Science And Systems Engineering Kyus
-
Sugiyama Minetaka
Department Of Biochemical Engineering & Science Kyushu Institute Of Technology
-
Nikawa Jun-ichi
Dep. Of Bioscience And Bioinformatics Fac. Of Computer Sci. And Systems Engineering Kyushu Inst. Of
-
Nikawa Jun-ichi
Department Of Bioscience And Bioinformatics Faculty Of Computer Science And Systems Engineering Kyus
-
Nikawa Jun-ichi
Department Of Biochemical Engineering & Science Kyushu Institute Of Technology
関連論文
- Deciphering cellular functions of protein phosphatases by comparison of gene expression profiles in Saccharomyces cerevisiae(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Effects on N-Glycosylation and Inositol on the ER Stress Response in Yeast Saccharomyces cerevisiae
- Construction and Characterization of Single-Gene Chromosomes in Saccharomyces cerevisiae(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Creating a Saccharomyces cerevisiae Haploid Strain Having 21 Chromosomes(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Cloning and sequence of the SCS2 Gene, Which Can Suppress the Defect of INO1 Exopression in an Inositol Auxotrophic Mutant of Saccharomyces cerevisiae
- Saccharomyces cerevisiae protein phosphatase Ppz1 and protein kinases Sat4 and Ha15 are involved in the control of subcellular localization of Gln3 by likely regulating its phosphorylation state(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- The Promoter of the Yeast OPI1 Regulatory Gene(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Construction of a Saccharomyces cerevisiae strain with a high level of RNA(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Ternary Complex Formation of Ino2p-Ino4p Transcription Factors and Apl2p Adaptin β Subunit in Yeast
- Repeated Chromosome Splitting Targeted to δ Sequences in Saccharomyces cerevisiae
- Functional Analyses of Pseudomonas putida Benzoate Transporters Expressed in the Yeast Saccharomyces cerevisiae
- Mutational Analysis and Localization of the Inositol Transporters of Saccharomyces cerevisiae(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Functional Analyses of Immediate Early Gene ETR101 Expressed in Yeast
- Isolation and Characterization of a SCT1 Gene Which Can Suppress a Choline-Transport Mutant of Saccharomyces cerevisiae^1
- Modification of Metabolic Pathways of Saccharomyces cerevisiae by the Expression of Lactate Dehydrogenase and Deletion of Pyruvate Decarboxylase Genes for the Lactic Acid Fermentation at Low pH Value
- A Novel Function of the Human Chaperonin CCT Epsilon Subunit in Yeast
- Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Increased transcription of NOP15, involved in ribosome biogenesis in Saccharomyces cerevisiae, enhances the production yield of RNA as a source of nucleotide seasoning(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- A Novel Function of the Human Chaperonin CCT Epsilon Subunit in Yeast
- Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae
- Genetic interactions of ribosome maturation factors Yvh1 and Mrt4 influence mRNA decay, glycogen accumulation, and the expression of early meiotic genes in Saccharomyces cerevisiae
- Construction and Characterization of Single-Gene Chromosomes in Saccharomyces cerevisiae
- Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes
- Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Increased transcription of NOP15, involved in ribosome biogenesis in Saccharomyces cerevisiae, enhances the production yield of RNA as a source of nucleotide seasoning
- Functionally redundant protein phosphatase genes PTP2 and MSG5 co-regulate the calcium signaling pathway in Saccharomyces cerevisiae upon exposure to high extracellular calcium concentration(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits
- Increased transcription of RPL40A and RPL40B is important for the improvement of RNA production in Saccharomyces cerevisiae(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Suppression mechanism of the calcium sensitivity in Saccharomyces cerevisiae ptp2Δmsg5Δ double disruptant involves a novel HOG-independent function of Ssk2, transcription factor Msn2 and the protein kinase A component Bcy1(GENETICS, MOLECULAR BIOLOGY, AND
- Functionally redundant protein phosphatase genes PTP2 and MSG5 co-regulate the calcium signaling pathway in Saccharomyces cerevisiae upon exposure to high extracellular calcium concentration
- Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14