傾斜海浜上でのソリトン変形に及ぼす風の影響
スポンサーリンク
概要
- 論文の詳細を見る
Design waves for near-shore structures are the representatives of shallow water waves in strong wind, and wind stresses acting on the wave surface have significant effects on the changes in hydraulic properties of the waves, such as the breaking point and wave height.To clarify the wind effects on soliton evolution, a numerical symulation is used based on the shallow water wave equation with perturbed terms (Perturbed Korteweg-de Vries equation), derived under the assumption of a equilibrium state between the nonlinearity and dispersion of waves, wind stresses, bottom friction, and viscous effects of water. The structure of soliton profiles and changes in breaking characteristics are, in particular. investigated in detail, comparing with the asymptotic solution by the inverse scattering theory.The significant evolution of the soliton, the rise of the water level (plateau) and the following tail, is produced by the shoaling and wind effects, and this evolution occurrs after the "soliton time". So the amplification factor of soliton height is directly subject to the scale of plateau, which becomes great in the case of wave propagation on steep slopes. It is also shown that the wind stresses are effective on the soliton with great amplitude on small slopes and that the soliton, as the results. breaks rather on the off-shore side than breaking points of no wind.
- 琉球大学工学部の論文
著者
関連論文
- 強風により発生する砕波波列に関する実験的研究
- 線形分散と浅海長波の非線形性を合わせ持つモデル方程式(第3報)-ステップ型リーフ上での波の非線形挙動-
- 線形分散と浅海長波の非線形性を合わせ持つモデル方程式(第4報)-非対称疎行列系へのBi-CGSTAB法の適用-
- バリ島サヌール海岸における波浪特性
- MODEL EQUATIONS OF NONLINEAR DISPERSIVE WAVES IN SHALLOW WATER AND AN APPLICATION OF ITS SIMPLEIFIED VERSION TO WAVE EVOLUTION ON THE STEP-TYPE REEF
- 波浪変形解析のための有限要素網生成
- 沿岸域における波浪変形予知のための汎用モデル
- 沿岸開領域における非線形波動解析のための新しい無限要素(2)高次無限要素と誤差評価
- 沿岸開領域における非線形波動解析のための新しい無限要素
- 線形分散性と浅海長波の非線形性を合わせ持つモデル方程式-2-
- 線形分散性と浅海長波の非線形性を合わせ持つモデル方程式
- ステップ型リ-フ先端部での反射境界条件および砕波限界
- 台風災害の周期性解析と危険度評価
- リ-フ海岸における波浪推算モデル
- 傾斜海浜上でのソリトン変形に及ぼす風の影響
- 斜面上での砕波の質量輸送