線形分散性と浅海長波の非線形性を合わせ持つモデル方程式
スポンサーリンク
概要
- 論文の詳細を見る
The Korteweg-de Vries (KdV) and Boussinesq equations are representatives for shallow-water waves in dispersive systems. Both equations have soliton solutions and play significant roles in many nonlinear wave systems, such as in coastal engineering works and plasma dynamics (e.g., Laitone, 1960; Zabusky and Kruskal, 1965). In coastal engineering, the cnoidal wave (Laitone, 1960), the periodic solution of the KdV equation, is employed to describe properties of shallow-water waves. The Boussinesq-type equation (Peregrine, 1966, 1967), however, is on the recent trend to be used. The main reason is in the difference between their dispersion relations. Though both dispersion relations are the same for long wave approximation, for shorter period waves the dispersion relation of the KdV equation is unbounded, whereas that of the Boussinesq-type equation takes finite values. The Boussinesq-type equation, therefore, has possibility of applying in numerical calculation not only to the original long wave field but to the shorter period wave field. However, these two equations cannot show the cusp that is the limiting form of a wave when breaks on a gentle slope. Whitham (1967) and Benjamin (1967) independently proposed, on this matter, a model equation combining long wave nonlinearity with linear dispersion, for taking account of the effects from shorter period waves. The integro-differential equation suggested by Whitham and Benjamin is effective to describe waves propagating to the specified direction, and then this fact is a limitation in application of the equation. In addition, it is difticult to handle the equation in numerical works because of singularity in the kernel. The present paper, therefore, develops the concept of Whitham to the equations of Peregrine (1967) and offers a model of equations for long waves in three-dimensional, nonlinear dispersive systems, to be used in prediction of wave deformation in the coastal zone.
- 琉球大学の論文
- 1994-09-01
著者
関連論文
- 強風により発生する砕波波列に関する実験的研究
- 線形分散と浅海長波の非線形性を合わせ持つモデル方程式(第3報)-ステップ型リーフ上での波の非線形挙動-
- 線形分散と浅海長波の非線形性を合わせ持つモデル方程式(第4報)-非対称疎行列系へのBi-CGSTAB法の適用-
- バリ島サヌール海岸における波浪特性
- ソフトエネルギ-・沖縄海水揚水発電
- 台風災害の周期性と危険度評価
- MODEL EQUATIONS OF NONLINEAR DISPERSIVE WAVES IN SHALLOW WATER AND AN APPLICATION OF ITS SIMPLEIFIED VERSION TO WAVE EVOLUTION ON THE STEP-TYPE REEF
- 波浪変形解析のための有限要素網生成
- 沿岸域における波浪変形予知のための汎用モデル
- 沿岸開領域における非線形波動解析のための新しい無限要素(2)高次無限要素と誤差評価
- 沿岸開領域における非線形波動解析のための新しい無限要素
- 線形分散性と浅海長波の非線形性を合わせ持つモデル方程式-2-
- 線形分散性と浅海長波の非線形性を合わせ持つモデル方程式
- ステップ型リ-フ先端部での反射境界条件および砕波限界
- 台風災害の周期性解析と危険度評価
- リ-フ海岸における波浪推算モデル
- 傾斜海浜上でのソリトン変形に及ぼす風の影響
- 斜面上での砕波の質量輸送