A metal/insulator tunnel transistor with 16 nm channel length
スポンサーリンク
概要
- 論文の詳細を見る
A nanometer transistor, metal/insulator tunnel transistor (MITT), which consists of only metal and insulator is experimentally studied. In the MITT, the Fowler-Nordheim tunneling currents through an insulator in lateral metal/insulator/metal structure are controlled by changing a voltage at a gate electrode upon the middle insulator, due to variation of tunnel-barrier thickness at the insulator. It is demonstrated that the MITT with 16 nm channel length fabricated by conventional photolithography can operate similarly to the conventional metal/oxide/semiconductor field-effect transistor with on/off ratio of current larger than 105. The result indicates that the MITT is a promising candidate for future switching transistors in ultralarge scale integrated circuits.
- American Institute of Physicsの論文
- 1999-05-24
著者
関連論文
- Theoretical Study for Drastic Improvement of Solar Cell Efficiency
- Direct detection of H atoms in the catalytic chemical vapor deposition of the SiH_4/H_2 system
- Identification of Si and SiH in catalytic chemical vapor deposition of SiH_4 by laser induced fluorescence spectroscopy
- A Novel Nanoscale Metal Transistor Fabricated by Conventional Photolithography
- Anisotropic electrical conduction and reduction in dangling-bond density for polycrystalline Si films prepared by catalytic chemical vapor deposition
- A metal/insulator tunnel transistor with 16 nm channel length
- Nanoscale metal transistor control of Fowler-Nordheim tunneling currents through 16 nm insulating channel
- Low-temperature crystallization of amorphous silicon using atomic hydrogen generated by catalytic reaction on heated tungsten
- Dependency of Boron Doping Efficiency on Hydrogen Flow Rate in Hydro-Fluorinated Amorphous Silicon
- Properties of Hydro-Fluorinated Amorphous Silicon-Carbide Produced by Intermediate Species SiF_2
- The Staebler-Wronski Effect in Hydro-Fluorinated Amorphous Silicon Prepared Using the Intermediate Species SiF_2
- Photoconductive Amorphous Silicon-Carbide Produced by Intermediate Species SiF_2 and CF_4 Mixture