固有ベクトル降下法と可約性写像を用いた複素多層パーセプトロン探索法
スポンサーリンク
概要
- 論文の詳細を見る
複素MLPは,実MLPには無い能力として周期性や非有界の近似能力を持つ.その探索空間は,実MLPと同様に条件数が巨大なクレバス形状に満ちており,従来の探索法では効率良い探索が行えない.また,実MLPと類似した可約性写像を内包する.本稿では,クレバス形状に有効な固有ベクトル降下法と可約性写像探索を組み合わせた複素MLP探索法を提案し,計算機実験にて有効性を評価する.
- 2011-12-13
著者
関連論文
- 原始初期点を初期値とする変分ベイズ法に関する一考察
- 交差検証誤差最小化によるSV回帰ハイパーパラメータ最適化の高速化
- クラスタリングを用いた強化学習システムIPMBNの環境変化への適応について(ニューラルネットワーク画像復元及び一般)
- BN混合モデルを用いたオンライン型方策改善システムの動的環境への適応(ベイジアンネット2 : ポスターセッション)
- 正解ニッチェ表現をめぐるルール間生存競争
- 迷路問題におけるXCSの強化学習能力評価 (人工知能基礎論研究会(第53回)特集「シナリオ創発の科学へ向けて」および一般演題) -- (セッション(1)知識発見と学習)
- カーネルマシンにおける勾配方向への2次元パス追跡法
- 次数分布に基づく事前情報を用いた複雑ネットワークのクラスタリング
- 原始初期点とSubsamplingを用いたEM初期値生成法
- Loopy-BPにおける計算速度向上のためのネットワーク構造簡略化(ニューラルネットワーク画像復元及び一般)
- 多層パーセプトロンの特異領域を利用した探索法
- 多層パーセプトロンの特異領域を利用した探索法
- 多層パーセプトロンにおける固有ベクトル降下法と直線探索 (ニューロコンピューティング)
- 固有ベクトル降下法と可約性写像を用いた複素多層パーセプトロン探索法
- 多層パーセプトロンにおける固有ベクトル降下法と直線探索
- 複素BFGS法を用いた複素ニューラルネットワークの学習法(バイオサイバネティックス,ニューロコンピューティング,学生論文特集秀逸論文,学生論文)
- 多層パーセプトロンにおける固有ベクトル降下法と直線探索
- 特異領域を活用した多層パーセプトロン探索法
- 特異領域を利用した多層パーセプトロン探索法の探索枝刈り(バイオサイバネティックス,ニューロコンピューティング)
- 特異階段追跡法を用いたサンプリング法による多層パーセプトロンモデル選択
- 特異階段追跡法を用いたサンプリング法による多層パーセプトロンモデル選択