磁場対流の解の分岐
スポンサーリンク
概要
- 論文の詳細を見る
A chaotic attractor is numerically demonstrated by a system of nonlinear partial defferential equations (PDEs) of two-dimensional magnetoconvection in a Boussinesq fluid in a square cell, a Rayleigh-Benard convection in the case of the strong imposed vertical magnetic field. It was shown that a bifurcation structure of the magnetoconvection is considerably similar to the typical routes to chaos in a low-dimensional system close to the bifurcation point. The vertical magnetic field fluctuations were expelled from most of the strong convective region and concentrated at the lateral boundaries in the cell.
- 岐阜工業高等専門学校の論文
- 2007-03-01
著者
関連論文
- 非線形波動渦の方程式の摂動展開とMathematicaを用いた数値計算
- 電子温度勾配によって駆動されるプラズマ乱流(乱流の発生と統計法則)
- 磁場対流の解の分岐
- 磁場対流における周期倍分岐
- 2次元Boussinesq磁場対流の数値計算II
- 2次元Boussinesq磁場対流の数値計算