磁場対流における周期倍分岐
スポンサーリンク
概要
- 論文の詳細を見る
Numerical solutions of nonlinear two-dimensional magnetoconvection in a Boussinesq fluid, a Rayleigh-Benard convection in a vertical magnetic field described by a system of nonlinear partial defferential equations (PDEs) in a square cell, were studied by using the pseudo-spectral method. Observed Period-3 oscillation suggested the existence of chaos in the PDEs for 2D Boussinesq magnetoconvection in a square cell, and a period-doubling/an inverse period-doubling cascade around there, even if it was not explicitly shown. We also observed development through such a symmetry-breaking /period-doubling sequence as in Rucklidge's suggestion (1994).
- 岐阜工業高等専門学校の論文
- 2007-03-01
著者
関連論文
- 非線形波動渦の方程式の摂動展開とMathematicaを用いた数値計算
- 電子温度勾配によって駆動されるプラズマ乱流(乱流の発生と統計法則)
- 磁場対流の解の分岐
- 磁場対流における周期倍分岐
- 2次元Boussinesq磁場対流の数値計算II
- 2次元Boussinesq磁場対流の数値計算