2次元Boussinesq磁場対流の数値計算II
スポンサーリンク
概要
- 論文の詳細を見る
Numerical simulation of a system of nonlinear partial differential equations (PDEs), which describe a Rayleigh-Benard convection in a vertical magnetic field, shows that some parts of the bifurcation of its solutions are very different from ODEs' in the aspect ratio 1/4. Quasi-periodic and irregular oscillations occur in a parameter regime in case PDEs. In relatively small Rayleigh numbers, PDEs and ODEs have similar solutions such as no convections, periodic convections, intermittent chaotic oscillations and steady-state convections.
- 岐阜工業高等専門学校の論文
- 2005-03-01
著者
関連論文
- 非線形波動渦の方程式の摂動展開とMathematicaを用いた数値計算
- 電子温度勾配によって駆動されるプラズマ乱流(乱流の発生と統計法則)
- 磁場対流の解の分岐
- 磁場対流における周期倍分岐
- 2次元Boussinesq磁場対流の数値計算II
- 2次元Boussinesq磁場対流の数値計算