B324 非線形シュレディンガー方程式の厳密に解ける初期条件
スポンサーリンク
概要
- 論文の詳細を見る
The initial conditions for the Nonlinear Schrodinger (NLS) equation, which make the associated eigenvalue problem solvable by virture of the Gauss hypergeometric function, are derived. The initial wave is consisted of one pulse, and it has a non-symmetric envelope. The eigenvalue problem under the derved initial conditions is also investigated. The derived eigenvalues give the whole solution of the NLS equation explicitly, and show that the initial pulse emits solitons with different velocities.
- 日本流体力学会の論文
- 2000-07-25
著者
関連論文
- 「流体における波動現象の数理とその応用」研究集会報告
- 27aQC-5 逓減摂動法のもとにおける非線形可積分方程式に付随した確率過程の導出と解析(古典・量子可積分系I(離散系・数値計算アルゴリズム・その他の数理モデルを含む),領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 24pWD-5 非線形可積分方程式に付随した確率過程と逓減摂動法(古典・量子可積分系(数値計算アルゴリズムを含む),領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 24pWD-10 超可積分離散スキームを利用した3体Calogero模型の超可積分離散近似(古典・量子可積分系(数値計算アルゴリズムを含む),領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 22pTP-5 コルモゴロフの前進方程式との対応により生成される非線形シュレディンガー方程式のポテンシャル(古典・量子可積分系,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 22pTP-7 超可積分離散スキームを利用した3体Calogero-Moser模型の時間離散近似(古典・量子可積分系,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 非線形可積分方程式の保存則に関連した確率微分方程式の構成とその解(波動現象の数理と応用)
- 18pWB-3 非線形シュレディンガー方程式の保存則とコルモゴロフの方程式II(古典・量子可積分系,領域11,原子・分子,量子エレクトロニクス,放射線物理)
- 24pXF-10 非線形シュレディンガー方程式の保存則とコルモゴロフの方程式(24pXF 古典・量子可積分系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 24pXF-5 Calogero-Moser模型の超可積分性を保つ時間離散化II(24pXF 古典・量子可積分系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 29pPSB-65 3体Calogero-Moser模型の可積分な時間離散化と超可積分性(29pPSB 領域11ポスターセッション,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 29pXG-4 非線形シュレディンガー方程式に付随した確率微分方程式の構成とその解(29pXG 応用数学・力学・波動,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 19aXE-9 可積分方程式の解に関連した確率変数とコルモゴロフの方程式(古典・量子可積分系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 25pYG-14 サイン・ゴルドン方程式に付随した確率微分方程式の解(古典・量子可積分系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 30pXA-10 Davey-Stewartson 方程式の平面波解に対する微小攪乱の発展と Darboux 変換による解
- 26aV-2 斥力ポテンシャル型境界条件の下でのDavey-Stewartson方程式の数値計算
- 斥力型ポテンシャルに付随した線形固有値問題の解とDavey-Stewartson方程式の初期値問題 (大自由度・強非線形の波動現象の数理)
- 28p-W-1 線形固有値問題の解とDavey-Stewartson方程式の局在解
- Davey-Stewartson 方程式の一般の初期値問題の数値計算と厳密解(波動の非線形現象の数理とその応用)
- 30p-E-5 DS方程式の初期値問題
- Davey-Stewartson方程式の数値計算と底面の不均一性による摂動(流体の非線形波動現象の数理とその応用)
- Davey-Stewartson方程式の局在解の安定性について(流体の非線形波動現象の数理とその応用)
- 31p-G-3 ドロミオンの衝突に対する新しい法則
- Davey-Stewartson方程式の摂動と数値計算(基研短期研究会「複合系における動力学の新展開」,研究会報告)
- プラズマにおける高次元局在構造とその安定性について(ポスターセッション,基研短期研究会「複合系における動力学の新展開」,研究会報告)
- 多次元空間内の非線形波動と局在構造 (非線形波動の広がり--KdV方程式誕生100年の現在)
- 5a-A-8 高次元可積分方程式の解の挙動
- 平らでない底を持つ場合の二次元の非線形波動(流体における波動現象の数理とその応用)
- 24p-L-10 不安定系におけるソリトン方程式II : 拡張された方程式
- 24p-L-9 不安定系におけるソリトン方程式I : dark soliton解
- 4p-PS-66 不安定非線形シュレディンガー方程式の性質とその応用II
- 4p-PS-65 不安定非線形シュレディンガー方程式の性質とその応用I
- 29pXG-11 超離散方程式の初期値問題の解の構成法(29pXG 応用数学・力学・波動,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 19aXE-10 Calogero-Moser模型の超可積分性を保つ時間離散化(古典・量子可積分系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 19aXE-3 1複素変数のMax-Plus変換(古典・量子可積分系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- F223 連続固有値に付随した非線形シュレーディンガー方程式の解
- 28aZD-9 超幾何関数を固有関数とするZakharov-Shabat固有値問題と, AKNS階層に属する方程式の解
- B324 非線形シュレディンガー方程式の厳密に解ける初期条件
- 31a-PS-56 不安定系における初期値問題とソリトンの役割
- 4p-PS-8 不安定な非線形シュレーディンガー方程式とソリトン解
- 可解な二次元格子模型とテータ関数恒等式(戸田格子とその周辺)
- 27a-X-7 可解な二次元格子模型 II : モジュラー関数の分数巾と臨界指数
- 27a-X-6 可解な二次元格子模型 I : 一点関数のランダム=ウォーク表示
- G212 2次元非線形波動における平面波解とダルブー変換に基づく解(G-21 波動・音・衝撃波(1),一般講演)
- AM06-16-007 非線形シュレディンガー方程式に関連した確率微分方程式の解(波動・音・衝撃波(2),一般講演)
- AM05-16-003 サインゴルドン方程式の周期解に付随した確率過程(波動・音・衝撃波1,一般講演)
- 5a-A-7 Derivative Nonlinear Schrodinger方程式のqauqe変換と多変数化
- 27p-G-3 散逸のある浅い系での非線形波動
- 28pTC-2 スロースタート効果を取り入れた最適速度模型における定常解まわりの乱れの成長と不安定性(28pTC 離散系・力学系とそのモデル・その他の数理モデル,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 28pTC-1 スロースタート効果を取り入れた超離散最適速度模型の基本図とフロー周期解(28pTC 離散系・力学系とそのモデル・その他の数理モデル,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 自己収束性波束の散乱問題における共鳴構造の崩壊と捕捉効果 (非線形波動現象の多様性と普遍性)
- 23aGU-12 超離散s2s-OV模型の複数の渋滞クラスターを持つ周期解と基本図(23aGU 古典・量子可積分系・離散系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 23aGU-11 スロースタート効果を取り入れた最適速度模型における乱れの不安定成長と摂動解析(23aGU 古典・量子可積分系・離散系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 定常輸送と拡散のもとでの物質の密度波について (非線形波動現象のメカニズムと数理)
- Derivative Nonlinear Schrodinger 方程式から得られる方程式と、時間変化する内部構造を持つ非線形孤立波(波の非線形現象の数理とその応用)
- 和達三樹先生の思い出に寄せて
- 18aAL-8 ソリトン束縛状態と放射間の運動量空間における干渉パターン形成(18aAL 量子エレクトロニクス(Bose粒子系の理論),領域1(原子・分子,量子エレクトロニクス,放射線物理))
- AKNS形式の線形散乱問題の区分的近似解法とその応用 (非線形波動研究の数理, モデリングおよび応用)
- 26pXR-11 初期波形の離散化によるAKNS線形散乱問題の近似解法とその応用(26pXR 確率過程・確率モデル2,古典・量子可積分系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 26aKJ-6 井戸型の外力ポテンシャルを持つ自己収束非線形シュレディンガー方程式における波束の捕捉効果(古典・量子可積分系・超離散系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 3p-G-8 非線形可積分方程式から得られる方程式とそれに関連する摂動問題(3pG 応用数学・力学・流体物理,応用数学・力学・流体物理)