B324 非線形シュレディンガー方程式の厳密に解ける初期条件
スポンサーリンク
概要
- 論文の詳細を見る
The initial conditions for the Nonlinear Schrodinger (NLS) equation, which make the associated eigenvalue problem solvable by virture of the Gauss hypergeometric function, are derived. The initial wave is consisted of one pulse, and it has a non-symmetric envelope. The eigenvalue problem under the derved initial conditions is also investigated. The derived eigenvalues give the whole solution of the NLS equation explicitly, and show that the initial pulse emits solitons with different velocities.
- 日本流体力学会の論文
- 2000-07-25
著者
関連論文
- 「流体における波動現象の数理とその応用」研究集会報告
- 27aQC-5 逓減摂動法のもとにおける非線形可積分方程式に付随した確率過程の導出と解析(古典・量子可積分系I(離散系・数値計算アルゴリズム・その他の数理モデルを含む),領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 24pWD-5 非線形可積分方程式に付随した確率過程と逓減摂動法(古典・量子可積分系(数値計算アルゴリズムを含む),領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 24pWD-10 超可積分離散スキームを利用した3体Calogero模型の超可積分離散近似(古典・量子可積分系(数値計算アルゴリズムを含む),領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 22pTP-5 コルモゴロフの前進方程式との対応により生成される非線形シュレディンガー方程式のポテンシャル(古典・量子可積分系,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 22pTP-7 超可積分離散スキームを利用した3体Calogero-Moser模型の時間離散近似(古典・量子可積分系,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 非線形可積分方程式の保存則に関連した確率微分方程式の構成とその解(波動現象の数理と応用)
- 18pWB-3 非線形シュレディンガー方程式の保存則とコルモゴロフの方程式II(古典・量子可積分系,領域11,原子・分子,量子エレクトロニクス,放射線物理)
- 24pXF-10 非線形シュレディンガー方程式の保存則とコルモゴロフの方程式(24pXF 古典・量子可積分系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 24pXF-5 Calogero-Moser模型の超可積分性を保つ時間離散化II(24pXF 古典・量子可積分系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))