Efficient synthesis and hydrolysis of cyclic oxalate esters of glycols
スポンサーリンク
概要
- 論文の詳細を見る
Based on the mechanism postulated for the formation of the cyclic carbonates 3 in the reactions of glycols 1 with oxalyl chloride in the presence of triethylamine, we present here three efficient syntheses of the cyclic oxalates 2 of various glycols 1 by controlling the formation of 3: replacement of the base by pyridine markedly diminishes yields of 3 in all reactions, realizing dramatic reversals of the product ratios in the reactions with the (R*,R*)-compounds 1g-i, q, r and pinacol (1k); although considerable amounts of the oxalate polymers are formed in the reactions with some (R*,S*)-glycols, this drawback can be removed by the use of 2,4,6-collidine instead of pyridine; 1,1′-oxalyldiimidazole is useful for the synthesis of two selected cyclic oxalates 2e, f. The cyclic oxalates 2 other than trisubstituted and tetrasubstituted ones were found to be very reactive: kinetic studies on the hydrolysis of 1,4-dioxane-2,3-dione (2a) as well as its mono- and some selected 5,6-disubstituted derivatives 2 have revealed that they undergo hydrolysis 260-1500 times more rapidly than diethyl oxalate (12) in acetate buffer-acetonitrile (pH 5.69) at 25°C. Although the cyclic oxalate 2l from cis-1,2-cyclopentanediol (1l) was 1.5 times more reactive than 2a, it has been shown with other substrates that increasing number of the alkyl substituents decreases the rate of hydrolysis. On the contrary, the phenyl group was found to have somewhat accelerative effect. © 2002 Pharmaceutical Society of Japan.
- 公益社団法人日本薬学会の論文
- 2002-03-01
著者
-
Ohba Masashi
Center For Instrumental Analysis Kanazawa University
-
Itaya T
Faculty Of Pharmaceutical Sciences Kanazawa University
-
ITAYA Taisuke
Faculty of Pharmaceutical Sciences, Kanazawa University
-
Itaya Taisuke
Faculty Of Pharmaceutical Sciences Kanazawa University
-
IIDA Takehiko
Faculty of Pharmaceutical Sciences, Kanazawa University
-
GOMYO Yasuko
Faculty of Pharmaceutical Sciences, Kanazawa University
-
NATSUTANI Itaru
Faculty of Pharmaceutical Sciences, Kanazawa University
-
Gomyo Yasuko
Faculty Of Pharmaceutical Sciences Kanazawa University
-
Natsutani I
Kanazawa Univ. Ishikawa Jpn
-
Iida Takehiko
Faculty Of Pharmaceutical Sciences Kanazawa University
関連論文
- Structure of Wyosine, the Condensed Tricyclic Nucleoside of Torula Yeast Phenylalanine Transfer Ribonucleic Acid
- Synthesis and Structure of the Hypermodified Nucleoside of Rat Liver Phenylalanine Transfer Ribonucleic Acid
- Efficient synthesis and hydrolysis of cyclic oxalate esters of glycols
- Synthesis and Structure of the Marine Ascidian 8-Oxoadenine Aplidiamine
- Purines. LXXIX. Synthesis and Hydrolysis of 3-Methoxyadenine and Its N^6-Benzyl Derivative Leading to the Corresponding 2-Hydroxyadenines
- Purines. LXXVIII. An Alternative Synthesis of the Sea Anemone Purine Alkaloid Caissarone
- Purines. IXXVII. An Alternative Synthesis of N^6-Demethylcaissarone from 9-Methyl-8-oxoadenine by Regioselective N(3)-Methylation : Utilization of the N(7)-Benzyl and N(1)-Benzyloxy Groups as Control Synthons
- Purines. LXXVI. Alkylation of 8-Oxoadenine Derivatives : Syntheses of 3,7-Dialkyl-, 3,9-Dialkyl-, and 3,7,9-Trialkyl-8-oxoadenines
- Purines. LXXV. Dimroth Rearrangement, Hydrolytic Deamination, and Pyrimidine-Ring Breakdown of 7-Alkylated 1-Alkoxyadenines : N(1)-C(2) versus N(1)-C(6) Bond Fission
- Purines. LXXIV. Syntheses and Rearrangements of 8-Oxoadenines Monomethylated at the N^6-, 1-, and 3-Positions
- Purines. LXXII. Oxidation of N^6-Alkyladenines with m-Chloroperoxybenzoic Acid Leading to N^6-Alkyladenine 1-Oxides
- Purines. LXXI. Preparation and Alkylation of 7-Alkyladenine 1-Oxides : A General Synthesis of 1-Alkoxy-7-alkyladenines
- Reactions of oxalyl chloride with 1,2-cycloalkanediols in the presence of triethylamine
- Isomerization through Cleavage and Recombination of Imidazolide Linkage in the Condensed Tricyclic System Related to Hypermodified Bases of Phenylalanine Transfer Ribonucleic Acids
- Bamberger Fission and Reclosure of 1-Alkyl-5-(alkylamino)imidazole-4-carbonitriles Leading to Their 2-Oxo Derivatives
- Purines. LXXIII. Syntheses of 8-Alkoxy- and 8-Hydroxy-3-alkyladenines from 3-Alkyladenine 7-Oxides through 7-Alkoxy-3-alkyladenines
- Reaction of Phosgene with the Tricycle Related to the Minor Base of Phenylalanine Transfer Ribonucleic Acids
- Practical Synthesis of Wybutosine, the Hypermodified Nucleoside of Yeast Phenylalanine Transfer Ribonucleic Acid
- Studies towards the Synthesis of the Hypermodified Nucleoside of Rat Liver Phenylalanine Transfer Ribonucleic Acid : Improved Synthesis of the Base β-Hydroxywybutine
- Synthesis of Optically Active (2-Arylvinyl)glycine Derivatives by Palladium-Catalyzed Arylation of (S)-N-(Benzyloxycarbonyl)vinylglycine