層交差結合によるMLP性能の向上
スポンサーリンク
概要
- 論文の詳細を見る
階層型パーセプトロン(MLP)に関する従来の研究において、層を交差する結合が存在しないことを前提していた。このようなMLPが単純で学習しやすい一方、性能も制限されてしまう。特に複雑な非線形判別問題に対して、ある層の節点数を十分大きく取らないと、それによって生ずる判別誤りは後続層をいくら増やしても訂正できない。それに対して、層交差結合のあるMLP(CLC-MLP)においては、低い層に使われていた情報がある程度高い層にも使えるので、適当な情報選択によって低い層に生じた誤りを高い層で訂正できる。故に、CLC-MLPに対してかなりの高い性能が期待できる。本文では、CLC-MLPの構成方法、構成要素に対する要求、学習方法などについて検討し、幾つかの新しい思想を提案する。
- 社団法人電子情報通信学会の論文
- 1994-05-19
著者
関連論文
- 第19回インテリジェントシステムシンポジウム(FAN2009)/第1回国際アウエアコンピューティングワークショップ(IWAC2009)報告
- ベイジアンフィルタに基づく研究者検索システムの開発(セッション1:検索)
- ベイジアンフィルタに基づく研究者検索システムの開発(一般セッション,パターン認識・メディア理解のための学習理論とその周辺)
- Fan-in-fan-out制限付きニューラルネットをノードとするニューラルネットツリーの進化的設計に関する考察
- 遅延を持つニューラルネットワークによるロボットナビゲーション
- NNC-Treeに基づく頭部姿勢認識(セッション1:検索)
- 1E-4 ニューラルネットツリーの汎化能力に関する一考察(学習,一般セッション,人工知能と認知科学,情報処理学会創立50周年記念)
- グレーゾーン付きニューラルネットツリーの生成(セッション9:アプリケーション(2))
- 判別木,ニューラルネットと進化アルゴリズムの統合
- NNC-Treeに基づく姿勢認識(テーマセッション,パターン認識・メディア理解のための学習理論とその周辺)
- 2K-4 遺伝的プログラミングを利用した二進判別木の設計
- クラスタリングを用いたLDAによる顔検出(ニューラルネットワーク画像復元及び一般)
- 次元圧縮に基づくNNC-Tree構築の高速化
- NNCに基づく距離空間での決定木の構築(顔・ジェスチャ認識のためのパターン認識メディア理解,一般)
- NNCに基づく距離空間での決定木の構築(顔・ジェスチャ認識のためのパターン認識メディア理解,一般)
- 重要な Training Data を進化させるための効果的な方法
- 重要なTraining Dataを進化させるための効果的な方法(PRMU&NCテーマセッション(1) : 認識と学習)(認識と学習,模倣学習)
- 重要なTraining Dataを進化させるための効果的な方法(PRMU&NCテーマセッション(1) : 認識と学習)(認識と学習,模倣学習)
- NN-MLPの進化学習の安定化に関する基礎的考察
- ランダムMLPが提供した特徴に基づく判別木の構成
- 層交差結合によるMLP性能の向上
- 同心円上の交差数を特徴とする手書き数字認識
- 神経回路網による最近傍方法の実現
- 教師付き学習によるニューラルネットツリーの実時間学習の性能向上と効率化(一般セッション(6))(データマイニングとパターン認識・メディア理解)
- NNTreeの再学習によるサイズリダクション
- NNTreeの再学習によるサイズリダクション
- ニューラルネットツリー : 記号と非記号手法の融合
- ニューラルネットツリー : 記号と非記号手法の融合