An Expanded Maximum Neural Network with Chaotic Dynamics for Cellular Radio Channel Assignment Problem(Nonlinear Problems)
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we propose a new parallel algorithm for cellular radio channel assignment problem that can help the expanded maximum neural network escape from local minima by introducing a transient chaotic neurodynamics. The goal of the channel assignment problem, which is an NP-complete problem, is to minimize the total interference between the assigned channels needed to satisfy all of the communication needs. The expanded maximum neural model always guarantees a valid solution and greatly reduces search space without a burden on the parametertuning. However, the model has a tendency to converge to local minima easily because it is based on the steepest descent method. By adding a negative self-feedback to expanded maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm then is fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the expanded maximum neural network and the chaotic neurodynamics. Simulations on benchmark problems demonstrate the superior performance of the proposed algorithm over other heuristics and neural network methods.
- 社団法人電子情報通信学会の論文
- 2004-08-01
著者
-
Tamura H
Univ. Of Miyazaki Miyazaki‐shi Jpn
-
Tang Zheng
The Faculty Of Engineering Miyazaki University
-
XU Xinshun
Faculty of Engineering, Toyama University
-
WANG Jiahai
the Faculty of Engineering, Toyama University
-
TAMURA Hiroki
the Faculty of Engineering, Toyama University
-
XU Xinshun
the Faculty of Engineering, Toyama University
-
Tamura H
Faculty Of Engineering Toyama University
-
Xu Xinshun
Faculty Of Engineering Toyama University
-
Wang Jiahai
Faculty Of Engineering Toyama University
-
Wang Jiahai
The Faculty Of Engineering Toyama University
関連論文
- 加速度センサを用いた感情を込めた歩行動作の識別実験
- 腕のスティフネスとPseudo-Hapticsの関係について : Pseudo-hapticsの特性の研究(人と感覚,人工現実感)
- 腕のスティフネスとPseudo-Hapticsの関係について--Pseudo-hapticsの特性の研究 (マルチメディア・仮想環境基礎)
- 両眼網膜像差による奥行きを持つ両義的仮現運動の知覚(視知覚とその応用及び一般)
- 立体視によって知覚される傾斜面の傾斜量および形状(視知覚とその応用及び一般)
- ステレオグラムの刺激のサイズが傾斜面知覚に与える影響(一般セッション,「手」,「マルチモーダル感覚知覚&統合とその応用」及び一般)
- Depth Reversalによって知覚される傾斜面の傾斜量と形状(一般セッション,「手」,「マルチモーダル感覚知覚&統合とその応用」及び一般)
- 低反射・高透過スクリーンを用いた人工影表示システム(インタラクティブシステム・画像入力デバイス・方式,及び一般)
- Fixation Mapと被験者数の関連性(インタラクティブシステム・画像入力デバイス・方式,及び一般)
- Multilayer Network Learning Algorithm Based on Pattern Search Method(Neural Networks and Bioengineering)
- TCRの認識多様性を考慮した免疫的ネットワーク
- 誘導遺伝的アルゴリズムを用いたスケジューリング問題の解法
- 立体視によって知覚される傾斜面の傾斜量および形状(視知覚とその応用及び一般)
- 両眼網膜像差による奥行きを持つ両義的仮現運動の知覚(視知覚とその応用及び一般)
- 両眼立体視とキャストシャドーの提示がVR空間における Pick-and-Place Task に与える影響
- 物体重心の移動軌跡解析による生体検出(一般セッション14)
- 顔・人体への誘目性を考慮した視覚探索モデルの提案(一般セッション7)
- 顔・人体への誘目性を考慮した視覚探索モデルの提案(一般セッション3,三次元画像,多視点画像)
- 物体重心の移動軌跡解析による生体検出(一般セッション5,三次元画像,多視点画像)
- 顔・人体への誘目性を考慮した視覚探索モデルの提案(一般セッション3,三次元画像,多視点画像)
- 物体重心の移動軌跡解析による生体検出(一般セッション5,三次元画像,多視点画像)
- A Fast and Reliable Approach to TSP using Positively Self-feedbacked Hopfield Networks
- Objective Function Adjustment Algorithm for Combinatorial Optimization Problems(Numerical Analysis and Optimization)
- An Expanded Maximum Neural Network with Chaotic Dynamics for Cellular Radio Channel Assignment Problem(Nonlinear Problems)
- An Improved Artificial Immune Network Model(Neural Networks and Bioengineering)
- A Neural-based Algorithm for Topological Via-minimization Problem
- A New Method to Solve the Constraint Satisfaction Problem Using the Hopfield Neural Network
- An Artificial Immune Network with Multi-layered B Cells Architecture
- An Artificial Immune System Architecture and Its Applications(Neural Networks and Bioengineering)
- The Fuzzy Immune Network and Its Application to Pattern Recognition(Special Section on Papers Selected from ITC-CSCC 2002)
- Design and realization of a network security model
- An Engineering Immune Network Model for Pattern Recognition
- Pattern Classification Using A Fuzzy Immune Network Model
- Learning Method of Hopfield Neural Network and Its Application to Traveling Salesman Problem (特集:論文誌C発刊30周年記念)
- Neuron-MOS V_T Cancellation Circuit and Its Application to a Low-Power and High-Swing Cascode Current Mirror
- 1 : n^2 MOS Cascode Circuits and Their Applications
- An Elastic Net Learning Algorithm for Edge Linking of Images
- An Efficient Neural Algorithm for Two-layer Planarization Problem in Graph Drawing
- Maximum Neural Network with Nonlinear Self-Feedback and Its Application to Maximum Independent Set Problem
- A Learning Algorithm of Elastic Net for Multiple Traveling Salesmen Problem
- Multiple-Valued Neuro-Algebra
- A Model of Neurons with Unidirectional Linear Response
- A Chaotic Maximum Neural Network for Maximum Clique Problem(Biocybernetics, Neurocomputing)
- A New Parallel Algorithm Analogous to Elastic Net Method for Bipartite Subgraph Problem
- A Modified Hopfield Neural Network for the Minimum Vertex Cover Problem
- An Improved Transiently Chaotic Neural Network with Application to the Maximum Clique Problems
- An Elastic Net Learning Algorithm for Edge Linking of Images(Neural Netoworks and Bioengineering)
- Stochastic Competitive Hopfield Network and Its Application to Maximum Clique Problem(Neural Networks and Bioengineering)
- A Low-Power and High-Linear Current to Time Converter for Wireless Sensor Networks