感圧トランジスタによる機械・電気変換素子
スポンサーリンク
概要
- 論文の詳細を見る
It has been shown that local compressive stress (or anisotropic stress effect, called ASE) gives large effect upon p-n junction characteristics. Especially when local compressive stress is applied to the emitter surface of a Si planar transistor, large change of current gain is observed, as shown in Fig. 2. This phenomenon is so sensitive to pressure change that some investigators have tried to apply it to mechano-electrical transducers such as acoustic devices, pressure gauges and other transducers. However there has been very little discussion from the practical point of view. The purpose of this article is to describe the sufficiently stable mechano-electrical transducer unit. As a transducer element, a new type of piezo-transistor is developed. It is gold-doped Si transistor which originaly has high signal-to-noise ratio, and has stressing area shown in Fig. 1. This electrode construction enables us to make transducer unit easily. However there remain some problems concerning stability. First of all, the fatigue of the stressed area was examined. Because of extremely small area of contact point formed by stressing needle and transistor, stress over the contact point is estimated to be extremely large. According to the experimental result, however, which was obtained from the cyclic load test(Fig, 3), it is proved to be tolerable for practical use. It is desirable to use a stressing needle having a large radius of curvature. On the other hand, the larger the radius of curvature is, the less becomes the sensitivity (Fig. 4). Therefore the selection of proper radius of curvature is needed to satisfy better signal-to-noise ratio and other practical demands. The circuit of piezo-transistor can be thought of as just the same as conventional transistor circuit. In order to obtain high sensitivity, it is desirable to have large base source impedance. For this reason it would be desirable to adopt fixed bias circuit. However, this circuit, as well known, is unstable. More stable operation against bias load change can be obtained by using current feedback bias circuit with a small sensitivity loss, shown in Fig. 6. In order to realize a mechanically stable transducer unit, stiffness of supporting structure of stressing needle must be small to axial direction and large to lateral direction. The reason why these conditions should be satisfied are explained as follows. Because of extremely large contact stiffness between the needle and the transistor surface, a slight axial displacement of stressing needle causes large stress change. This axial displacement mainly occurs from the difference of thermal expansion between materials constructed. Then the materials having the same thermal expansion coefficient should be chosen. These are Kovar for transistor header and frame construction, sapphire for stressing needle, and special elastic material developed in our laboratory(Fe-Ni-Ti alloy)for elastic plates. From the above consideration for realizing mechanical stability and for easy construction of units, the structure shown in Fig. 8 is adopted. With this structure, the following performances are obtained. 1) Sensitivity and noise level : shown in Table 2. 2) Humidity test : It was found that bias load changed during first 100 hr, at the condition of 45℃;, 95% humidity. After that, almost no changes were observed up to 1000 hr (Fig. 9). This means that 100 hr aging and readjustment of bias load are needed. 3) Mechanical strength : This test was carried by applying static force or shock from three directions shown in Fig. 10. To the direction (1) and (3), static forces were applied. It endured up to 5g to direction (1) and 40g to direction (3). To the direction (2) repetitive impulse forces were applied, and it endured 2. 5g peak amplitude of force at more than 500 repetitions. 4) Temperature dependence : Units were tested with regard to temperature dependence of bias load from 0 to 40℃;. The result is shown in Fig. 11. From this curve
- 1972-06-01
著者
関連論文
- チャンネル間位相差の聴感効果 (<特集>聴覚)
- 音質の総合評価
- 音質評価の方法論について
- 音質評価法の基本的考察
- 感圧トランジスタによる機械・電気変換素子
- 固定ヘッドPCM磁気録音機の試作
- 6-10 家庭用VTRを利用した簡易画像ファイル
- 感音声性難聴者の周波数選択能力
- 音響学1958年の展望 : 音声
- 日本万国博における電気音響設備および機器について
- OSSの物理特性と水平面方向定位との関係について
- 音場における音声伝送品質のためのMTFとSTIについて
- 明瞭度の新しい予測方法 (室内音響の新しい設計方法)
- 基準的音響伝送系OSSのためのHATS構成
- ダミーヘッドを用いた測定 (ダミーヘッドを用いた測定)
- 音声明瞭度評価の展望 (<小特集>シンポジウム「音声情報伝達」)
- 音響測定システムとソフトウェアパッケージ
- 補聴器計測のための模擬 in situ 測定システム
- IRCAMの「音楽の心理音響学」シンポジウム
- 東京都内加入者室内騒音スペクトルについて
- 4号電話機の総合通話特性〔第2報〕
- 簡易通話能率試験器について
- 4号電話機の総合通話特性
- 18p-A-17 S-doped GaSbの電気抵抗の圧力効果
- A. S. E.(Anisotropic Stress Effect)の諸問題 : pn接合の応力効果シンポジウム
- 18p-A-19 接合の応力効果 IV : 深い準位
- Stress Dependence of Minority Carrier Lifetime : 半導体 (圧力効果, 電子顕微鏡による観察)
- 12a-K-17 Si p-n接合の応力効果II(非出払)
- 3a-G-4 Si p-n接合の応力効果
- Ge p-n接合の応力効果 : 半導体 : ダイオード,不安定
- 半導体のピエゾ抵抗効果V : 半導体(Device(応力効果, その他)
- 6a-F-8 半導体のピエゾ抵抗効果 II
- 半導体のピエゾ抵抗効果 I : 半導体(負抵抗, ピエゾなど)
- Geホール素子II : 応用半導体
- 日本主通話標準装置
- 追悼文 勝木保次先生
- 追悼文 勝木保次先生〔含 肖像・略歴〕
- 学会創立50周年を迎えて
- 巻頭言
- スピーカの実音場におけるパーフォーマンスについて : 物理特性と聴感特性
- 企画委員会を中心として
- 音質の評価(第3回)
- 音質の評価(第2回)
- 音質の評価
- 音質評価の基本問題
- 明瞭度委員会
- AENについて : 電話回線の新しい定格法
- 音声の帯域圧縮伝送
- 音声伝送
- ARAENについて
- 半導体の圧力効果とそのステレオピックアップへの応用 (最近の半導体素子とその応用(特集))
- 電話回線の許容最大損失とそれによつて保証される通話品質
- 音声の瞬時レベル分布およびスペクトル
- 日本語に対する定量的な伝送品質と伝送特性との関係
- スピ-カの音響性能評価(電気音響)
- 音響スペクトログラムカラー表示装置(万国博特集)
- 音響スペクトログラムカラー表示装置 (万国博特集号)
- 家庭用MUSE方式VTRメカの開発
- 小型カセットハイビジョンVTRのメカニズムの開発
- 純音オージオメトリにおける許容騒音レベル