Effect of Overexpression of LAS17 on Stress Tolerance and the Stability of Extrachromosomal DNA in Saccharomyces cerevisiae
スポンサーリンク
概要
- 論文の詳細を見る
The effects of the overexpression of LAS17/BEE1, which encodes a yeast protein exhibiting sequence homology to the Wiscott-Aldrich syndrome protein, on the cell growth of Saccharomyces cerevisiae were examined. Sake yeast strain UT-1 grows at a faster rate as a result of the overexpression of LAS17 than control cultures under various stresses such as high temperature, high ethanol concentration, and oxidative stress, and the tolerance to these stresses was increased compared with the control. Moreover, a high cell survival rate was attained with overexpression of LAS17, when cells in the stationary phase of the growth cycle were subjected to heat killing (48℃) or ethanol killing (20% v/v). In addition, the rate of induction of rho^- was markedly reduced by overexpression of LAS17 when serine, tyrosine, and aspartic acid were used as N sources and the yeast was cultured at 35℃, while rho^- strains in control cultures were induced at a high frequency. After the incubation of cells harboring a multicopy vector in YPD or synthetic complete medium, almost all of the cells inherited the vector at about 15 copies per cell as a result of the overexpression of LAS17, whereas the cells harboring the control vector accounted for only 15% of the total number of cells. These results suggest that Las17p might be a multifunctional protein involved in cell growth regulation, extrachromosomal DNA transportation and stress responses.
- 社団法人日本生物工学会の論文
- 2001-01-25
著者
-
Hara Shodo
General Research Laboratory Of Kiku-masamune Sake Brewing Co.ltd.
-
Hara Shodo
General Research Labolatories Of Kiku-masamune Sake Brewing Co. Ltd.
-
Mizoguchi Haruhiko
General Research Laboratory Of Kiku-masamune Sake Brewing Co.ltd.
-
Mizoguchi Haruhiko
General Research Labolatories Of Kiku-masamune Sake Brewing Co. Ltd.
関連論文
- New Insertion Sequence in Lactobacillus fructivorans Strains Isolated from Spoiled Sake(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Properties of TCA-Insoluble Peptides in Kimoto (Traditional Seed Mash for Sake Brewing) and Conditions for Liberation of the Peptides from Rice Protein
- Isolation of Copper-Tolerant Mutants of Sake Yeast with Defective Peptide Uptake(BREWING AND FOOD TECHNOLOGY)
- Effect of Amino Acids on Peptide Transport in Sake Yeast(Brewing and Food Technology)
- Effect of Cellular Inositol Content on Ethanol Tolerance of Saccharomyces cerevisiae in Sake Brewing(BREWING AND FOOD TECHNOLOGY)
- Increased Alcohol Acetyltransferase Activity by Inositol Limitation in Saccharomyces cerevisiae in Sake Mash
- Increased Ethyl Caproate Production by Inositol Limitation in Saccharomyces cerevisiae
- Specific Expression and Temperature-Dependent Expression of the Acid Protease-Encoding Gene (pepA) in Aspergillus oryzae in Solid-State Culture (Rice-Koji)
- Influence of Amino Acid Content in Seed Mash on Peptide Uptake by Yeast Cells in Main Mash in Sake Brewing Process
- Properties of the Peptides Liberated from Rice Protein in Sokujo-moto
- Effect of Overexpression of LAS17 on Stress Tolerance and the Stability of Extrachromosomal DNA in Saccharomyces cerevisiae
- Permeability Barrier of the Yeast Plasma Membrane Induced by Ethanol
- Ethanol-Induced Alterations in Lipid Composition of Saccharomyces cerevisiae in the Presence of Exogenous Fatty Acid
- Cloning and Nucleotide Sequence of the Glutamate Decarboxylase-encoding Gene gadA from Aspergillus oryzae(Biochemistry & Molecular Biology)
- Effect of Fatty Acid Saturation in Membrane Lipid Bilayers on Simple Diffusion in the Presence of Ethanol at High Concentrations
- Differences in the Intracellular Lipids of Sake Yeast in Main Mash Seeded Respectively with Two Kinds of Seed Mash : Kimoto and Sokujo-moto
- Isolation and Characterization of Sake Yeast Mutants Deficient in γ-Aminobutyric Acid Utilization in Sake Brewing(BREWING AND FOOD TECHNOLOGY)
- High Fidelity Segregation of a YEp Vector in [cir^0] Strains of the Yeast Saccharomyces cerevisiae
- A Role of Saccharomyces cerevisiae Fatty Acid Activation Protein 4 in Palmitoyl-CoA Pool for Growth in the Presence of Ethanol
- Influence of Ras Function of Ethanol Stress Response of Sake Yeast
- TLR ligands of Lactobacillus sakei LK-117 isolated from seed mash for brewing sake are potent inducers of IL-12(BREWING AND FOOD TECHNOLOGY)
- TLR ligands of Lactobacillus sakei LK-117 isolated from seed mash for brewing sake are potent inducers of IL-12
- Anti-allergic effect of lactic acid bacteria isolated from seed mash used for brewing sake is not dependent on the total IgE levels(BREWING AND FOOD TECHNOLOGY)
- Inhibitory effects of autolysate of Leuconostoc mesenteroides isolated from kimoto on melanogenesis(BREWING AND FOOD TECHNOLOGY)
- Anti-allergic effect of lactic acid bacteria isolated from seed mash used for brewing sake is not dependent on the total IgE levels
- Inhibitory effects of autolysate of Leuconostoc mesenteroides isolated from kimoto on melanogenesis