P12-11 新燃料「ハイパーコールの開発」と「ガスタービンへの適用技術開発」
スポンサーリンク
概要
- 論文の詳細を見る
This study is concerned with the production of ashless coal (called as Hypercoal, HPC) by the extraction of pure coal effective for combustion from raw coal and the construction of high efficient compound cycle electric power generation system by injecting the HPC directly to gas turbine in order to reduce CO_2 emissions. The HPC with 200ppm of ash content and 0.5ppm of alkali (Na+K) content was produced by removing ash with 1-Methyl naphthalene (1MN) and alkali with inorganic ion-exchange material. The burnout time of HPC with 10μm diameter was estimated as below 0.1 seconds by the simulation of gas turbine combustion. As a result of LCA on the CO_2 load of this system, namely HPC direct combustion gas turbine power generation system with 48% of net thermal efficiency, 20% of CO_2 emissions reduction can be expected comparing with the conventional PCF system.
- 一般社団法人日本機械学会の論文
- 2002-06-14
著者
-
奥山 憲幸
神戸製鋼所
-
奥山 憲幸
株式会社神戸製鋼所
-
奥山 憲幸
(株)神戸製鋼所技術開発本部
-
安藤 隆
出光興産
-
篠崎 貞行
石炭利用総合センター
-
谷口 正行
日立製作所
-
篠崎 貞行
CCUJ
-
下田 誠
日立製作所
関連論文
- No.74 無灰炭製造プロセスにおける水銀分配挙動と存在形態(灰・微量金属(3))
- No.14 高性能粘結材添加によるコークス配合炭軟化溶融性の変化(熱分解・コークス(2))
- No.10 完全無灰炭の非鉄金属還元材としての利用可能性(熱分解・コークス(1))
- 1-7-2 石炭の熱時抽出における液状分子の生成消失挙動(1-7 改質・構造,Session 1 石炭・重質油等,研究発表)
- 71 ハイパーコールを用いた劣質炭多量配合による高強度コークス製造(熱分解・コークス(2))
- 65 コークス気孔分布へのハイパーコール添加の影響(熱分解・コークス(1))
- 1-5 ハイパーコール抽出溶剤の検討 : 石炭由来成分の抽出効果((2)溶剤抽出・構造,Session 1 石炭・重質油等)
- 67 石炭熱時抽出における内部水素の挙動と抽出炭のコークス材性能への影響(コークス品質,抽出物添加)
- 34 無灰炭製造プロセスにおけるヒ素の分配挙動評価(微量元素,灰利用)
- 9 ハイパーコール溶剤分別成分の炭化特性(ハイパーコール製造・利用)
- 5 溶剤抽出フラクショネーション法によるハイパーコールのキャラクタリゼーション(ハイパーコール製造・利用)
- 4 ハイパーコール連続製造プロセスの開発(改質,処理,クリーン化)
- 63.高温抽出したハイパーコールの軟化溶融性とコークス強度
- 18.無灰炭製造プロセスにおける水銀分配挙動の評価
- 1-3.ハイパーコール軟化溶融性に及ぼす抽出条件の影響((1)溶剤抽出・ハイパーコール,Session 1 石炭・重質油等)
- 完全無灰炭(ハイパーコール)製造プロセスの開発 (特集:エネルギー)
- 43.ハイパーコール製造プロセスの経済性(2)
- ハイパーコール利用コークス製造技術 (特集 新鉄源・石炭)
- 石炭液化用高活性リモナイト触媒の開発 (2) - インドネシア産Ni含有リモナイトの性状と液化活性 -
- 石炭液化用高活性リモナイト触媒の開発 (I) - 豪州産リモナイトの性状と液化活性 -
- 59.油中粉砕粒子径の液化活性への影響
- 57.石炭液化Ni含有リモナイト触媒のキャラクタリゼーション
- 24.ハイパーコール(完全無灰炭)製造技術の開発-1 : 石炭の溶剤抽出と灰分の除去特性
- 1-18.石炭液化触媒の実用化検討(2) : インドネシア産Ni含有リモナイトの性状と液化活性(Session 1 石炭・重質油)
- 27.バンコ炭液化重質成分の溶剤脱灰特性 : 沈降分離性能におよぼすCLB性状の影響
- P-8.石油系重質油の水素化分解特性の評価(Poster Session)
- 58.石炭液化アドバンストプロセスの開発研究-1 : 二極分化溶剤システムによるスラリー濃縮効果の影響
- 27.ハイパーコール中に残存するアルカリ金属の定量分析とキャラクタリゼーション
- 64.ハイパーコールの抽出条件によるコークスの強度制御
- 1-4.ハイパーコールの代替利用による冶金コークスの強度改善効果((1)溶剤抽出・ハイパーコール,Session 1 石炭・重質油等)
- 42.ハイパーコール添加によるコークス熱間性状への影響
- 34.石炭液化技術の高度化研究-2 : ガス循環にともなう共存ガスの液化反応性におよぼす影響
- 33.石炭液化技術の高度化研究-1 : ガス循環による軽質留分系外抜出し効果の液化反応性に及ぼす影響
- 3.液化溶剤の改良研究 : 石炭液化油の軽質化と触媒添加量の低減
- 31.ビクトリア褐炭の液化(13) : 褐炭の油中脱炭酸処理の効果と液化反応性への影響
- 61.ハイパーコール製造条件の最適化検討(3) : 石炭抽出条件の影響と抽出炭の特性
- 1-16 溶剤脱灰炭(HyperCoal)中に存在する灰分の検討 : 低エミッション石炭エネルギー利用システム先導研究 溶剤脱灰技術開発(2)(Session 1 石炭・重質油)
- 石炭液化反応後の鉄触媒の形態と残存活性 -硫化水素濃度の影響-
- No.45 コークス配合炭の軟化溶融挙動に及ぼす粘結材添加の影響(熱分解・コークス(2))
- 68 劣質炭のハイパーコール化によるコークス用原料炭としての評価(コークス品質,抽出物添加)
- 溶剤抽出した無灰炭の軟化溶融性とコークス原料としての添加効果(コークス製造技術への展開,劣質な石炭のコークス化機構解析とコークス強度評価)
- 1-6.コークスの強度におよぼす原料炭へのハイパーコール添加効果((2)改質2・コークス,Session 1 石炭・重質油等)
- No.46 コークス配合炭熱間性状におよぼす粘結材添加の影響(熱分解・コークス(2))
- No.58 高性能粘結材(HPC)抽出溶剤の平衡組成(2)(改質・処理・クリーン化(1))
- No.47 溶剤抽出フラクショネーション法によるコークス原料炭および粘結材特性の評価(熱分解・コークス,その他)
- No.44 コークス画像解析による基質連結性評価法の開発(熱分解・コークス(2))
- 68.褐炭液化重質物の溶剤脱灰(6) : 界面沈降速度におよぼす諸因子の影響と速度式の導出
- 39.ハイパーコール抽出スラリーの固液分離特性
- 1-5.溶剤抽出脱灰炭(Hyper-coal)の軟化流動特性((2)改質2・コークス,Session 1 石炭・重質油等)
- 7.溶剤脱灰法を用いた低品位炭の改質効果
- 1-7 完全無灰炭(Hyper-coal)の用途とプロセス経済性((2)石炭灰・改質,Session 1 石炭・重質油等)
- 完全無灰炭(Hyper-coal)の製造と商業化の可能性(FP2 燃料多様化・環境技術1)
- 26.溶剤抽出脱灰炭(ハイパーコール)に残存する無機物の特性
- 1-16.完全無灰炭(Hyper Coal)製造プロセスの経済性((4)石炭液化・改質,Session 1 石炭・重質油等)
- 38.ハイパーコール製造溶剤脱灰プロセスの開発(1) : プロセスアウトラインの構築
- 1-7.石炭液化反応における鉄触媒の形態変化(Session(1)石炭利用)
- 1-5-3 石炭抽出物添加によるコークスの気孔構造変化(1-5 コークス2,Session 1 石炭・重質油等,研究発表)
- B-9 予混合火炎の安定化法とNO_x特性
- 湿式選別法を用いた石炭燃焼灰からの中空球形粒子の回収
- 7-9 石炭飛灰からの中空球形微粒子の回収((5)廃棄物有効利用または資源循環,Session 7 環境対策・リサイクル,研究発表(口頭発表))
- 18.石炭液化油の水素化処理に関する検討 : 共存ガス存在下における触媒活性低下挙動
- 6.液化溶剤の改良研究 : 軽質油製造を目的とした褐炭液化重質留分の循環溶剤への適用
- 69.褐炭液化重質物(CLB)の溶剤脱灰(7) : 脱灰挙動に及ぼすCLB性状の影響
- ハイパーコール製造のための脱アルカリ技術 : 水溶液中でNa吸着させたY型ゼオライトの再生処理と非水溶液中のNa吸着挙動
- 25.ハイパーコール製造のための脱アルカリ技術 : 高温・高圧下でのゼオライトによる脱アルカリと,ベンゾフェノンナトリウムを用いた非水溶液中でのゼオライトへのNa吸着挙動
- 43.ハイパーコール製造のための脱アルカリ技術 : 溶剤脱灰炭の無機イオン交換材による処理
- 有機・無機イオン交換剤を用いたハイパーコール製造のための脱アルカリ技術
- 58.ハイパーコール製造のための脱アルカリ技術
- 10.液化反応の初期過程に関する研究 : 石炭前処理条件と溶剤効果(I)
- F153 研究室規模の実験炉から実機ボイラまで適用可能な微粉炭燃焼モデル
- 1-20.微粉炭燃焼におけるフライアッシュ生成挙動のモデル化(Session(1)石炭利用)
- 22.XPSによる石炭有機硫黄官能基の定量分析
- 1-4-2 石炭の熱時抽出率変化と軟化溶融性(1-4 コークス1,Session 1 石炭・重質油等,研究発表)
- P12-11 新燃料「ハイパーコールの開発」と「ガスタービンへの適用技術開発」
- 23.クリーンコール製造のためのアルカリおよびアルカリ土類金属の除去
- 高性能粘結材製造技術の開発(鉄鋼業における省エネ・炭酸ガス削減技術の取り組み)
- 石炭の溶剤抽出の基礎とその石炭転換プロセスへの展開(石炭基礎(7))
- 1-4-1 溶剤抽出フラクショネーション法による構造分析にもとづく原料炭・粘結材のコークス化挙動の検討(1-4 構造,Session1 石炭・重質油等,研究発表)
- 劣質炭の改質による石炭資源適用力の拡大 : UBCとHPCの開発状況と展望
- No.39 粘結材添加がコークス原料炭の軟化溶融挙動に及ぼす影響(研究発表)
- No.40 一般炭の改質による粘結炭代替利用(研究発表)
- No.7 ハイパーコール製造プロセス固液分離工程における分離効率(研究発表)
- No.41 画像解析手法を用いたコークス強度評価技術の開発(研究発表)
- No.38 高性能粘結材利用におけるコークス強度向上機構(研究発表)
- No.69 溶剤抽出フラクショネーション法による構造分析に基づく石炭・粘結材のコークス化挙動予測の試み(熱分解・コークス素(4))
- No.68 粘結材添加がコークス原料炭の軟化溶融挙動に及ぼす影響(2)(熱分解・コークス素(3))
- No.1 ハイパーコール製造プロセスにおける原料石炭の分級効果(改質・処理・クリーン化(1))
- No.32 石炭溶剤抽出物の溶剤分離回収操作に関する基礎的検討(熱分解・コークス(2),構造・物性(1),コプロセッシング)
- No.33 ハイパーコール(HPC)を用いたコークス製造技術の開発(熱分解・コークス(2),構造・物性(1),コプロセッシング)
- No.67 高性能粘結材を利用したコークス製造技術における配合炭粒度の影響(熱分解・コークス素(3))
- No.10 ハイパーコールプロセス副生炭の特性と用途(改質・処理・クリーン化(3))
- No.7 コークス反応後強度に及ぼす高性能粘結材(HPC)の効果(2)
- No.6 コークス反応後強度に及ぼす高性能粘結材(HPC)の効果(1)
- No.16 ハイパーコール抽出溶剤の検討(3):石炭抽出促進成分とその循環性
- No.8 粘結材添加がコークス原料炭の軟化溶融挙動に及ぼす影響
- No.4 マクロ孔を有する活性炭の開発
- 溶剤抽出フラクショネーション法による構造分析を用いた石炭・粘結材のコークス化挙動予測の試み
- ハイパーコールの製造方法, 特徴と応用