セル・オートマトン法による流れの数値解析
スポンサーリンク
概要
- 論文の詳細を見る
The cellular automaton method, which can generate the Navier-Stokes equation, is expected to be an effective technique for simulating fluid motion numerically. Because of its complete discreteness, this method has the advantage of implementing the statistical mechanical property of fluid motion through use of the specially designed massive parallel hardware. The present paper aims at representing the boundary conditions of the inflow-outflow, the rigid walls and the moving walls using the cellular automaton concepts. The boundary conditions approximated in this paper will be applied to calculate Poiseuille flow, Couette flow, the cavity flow and von Karman street problem. The present microscopic expression of the boundary conditions to the cellular automaton model of fluid dynamics will describe the reasonable alternative to the traditional macroscopic boundary conditions. Then computational efficiency of vectorization and parallelism for the present algorithm of the collision process in the model will be examined by several flow problems.
- 一般社団法人日本機械学会の論文
- 1991-08-25
著者
関連論文
- 異常診断系におけるあいまい関係の作成に関する一考察
- 11020 あいまい推論の診断技術への応用
- 異常診断におけるあいまい推論の試み〔含 付録〕
- ナトリウム加熱蒸気発生器の流動安定性解析 : 第1報,モード展開法による安定性理論
- 物理現象を解析する技術 (21世紀への原子力とAI技術--高度情報化時代の恐竜にならないために)
- 流れの数値解法における高次差分法の数値的安定性と数値振動
- 流れの数値解法におけるPoisson方程式の反復解法に及ぼす境界条件の影響
- 陰解法に基づく流れの数値解法における反復解法の収束性
- 2相流の数値解法における時間ステップのあいまい制御
- 二相流の数値解法に関する一考察
- 1259 格子ボルツマン法による核生成のシミュレーション
- 二相流に対する熱流動格子ボルツマンモデルの提案(流体工学,流体機械)
- 熱流動格子ボルツマンモデルに対する安定性解析(流体工学, 流体機械)
- 504 二相流格子ボルツマンモデルに対する境界条件(OS22-1 粒子法(格子気体法,格子ボルツマン法など)による熱流動解析(1))(OS22 粒子法(格子気体法,格子ボルツマン法など)による熱流動解析)
- 列車のトンネル突入・退出時に坑口から放射される圧力波の現地測定(流体工学, 流体機械)
- FDLBMへの半陰解法の適用と数値的安定性解析 : 流体工学,流体機械
- 格子ガスオートマトン法による二成分流体の凝集・分離の数値計算
- 552 熱流動格子ボルツマンモデルに対する安定性解析
- E126 熱流動二相格子ボルツマンモデル
- E125 格子ガスオートマトン法による二成分の凝集・分離の数値計算
- III. 計算科学的手法による原子力分野の複雑現象の解明 III-1 概要
- 並列計算機におけるセルラオートマトン法の有効性
- セルラオートマトン法によるかくはん槽内の二成分流の混合計算(流体工学,流体機械)
- 新旧制御盤比較におけるタスク評価へのFLIAの応用 : 第2報, クラスター分析によるタスクの区分け
- 新旧制御盤比較におけるタスク評価へのFLIAの応用
- 単眼画像から陰影を考慮し形状を復元する方法
- 不適切な条件での反復法による数値解のふるまい
- 二流体モデルの不適切性と二階空間微分項による適切化
- セルラオートマトン法による二成分対向流界面の乱れの評価
- 回転空間における錯視図形の心像の復元
- 不適切な二流体モデルの数値解に関する一考察
- 流れの数値解法におけるモデル規範形適応制御
- シミュレーション技法へのあいまいさの応用
- エネルギーモデルへの多属性効用理論の利用について(エネルギー問題とOR)
- 流入・流出部の境界条件に対するセルラオートマトン表現
- 線画図形の頂点形状と全体形状の復元
- ファジィ積分を用いたテニスにおけるプレーの難易度評価
- 流れの計算における反復計算のためのファジィ制御の有効性
- 局所的な不適切条件での対流拡散方程式の数値解
- 線画図形からの隠ぺい形状復元
- 不適切な熱伝導問題の数値解析について(精度保証付き数値計算法とその応用)
- 不適切な条件における熱伝導方程式の数値解
- 第三の科学としての数値シミュレーション
- Poiseuille流れのオートマトン解における乱れ
- "猿とバナナ"問題に対するGPSの修正とあいまい化 : 第2報, 問題解決上の戦略
- セルオートマン法による自然対流の解析
- セル・オートマトン法による流れの数値解析
- "猿とバナナ"問題に対するGPSの修正とあいまい化 : 第1報, GPSのフィードバック原理による修正
- ファジィ積分による運転行動の難易度評価
- セルラオートマトン法をもちいた複雑な境界を持つ流路内の流れの計算〔流体工学, 流体機械〕
- 研究内容概説 (特別企画 原子力基盤クロスオ-バ-研究の現状と今後の展開(2)) -- (原子力用計算科学技術分野について-2-計算科学的手法による原子力分野の複雑現象の解明)