ウェーブレットを前処理に用いた共役勾配法の並列処理
スポンサーリンク
概要
- 論文の詳細を見る
In computational fluid dynamics, most of the computing time, especially for large-scale problems, is occupied by linear system solvers. The reason for this is that computing time of the solvers exponentially increases with increase of grid points. However, the increase of computing time can be suppressed by the incomplete discrete wavelet transform (iDWT). In this study, we first briefly explain the method of iDWT and how to apply it to the preconditioning for a conjugate gradient (CG) solver. The iDWTCG solver is advantageous for large-scale problems, which are the main object to be handled in recent parallel processing studies of CFD. Therefore, we consider parallel implementation of the iDWTCG on the Cray T3D parallel processing system. The results show that modifying data arrangement in iDWT makes it possible to achieve good performance with 128 processors up to 102 times faster than with 1 processor.
- 一般社団法人日本機械学会の論文
- 1997-05-25
著者
関連論文
- 不完全離散ウェーブレット変換を前処理に用いた共役勾配法の並列処理
- CIVA-粒子法の非圧縮性流体解析への応用
- 数値流体力学のための高精度メッシュフリー手法の開発 〔流体工学, 流体機械〕
- 不完全離散ウェ-ブレット変換のポアソン方程式解法への応用と並列処理
- ウェーブレットを前処理に用いた共役勾配法の並列処理
- 高精度グリッドレス法とその粒子法への応用
- 小規模ブロック化行列の多項式を用いた共役勾配法の前処理手法の改良
- 小規模ブロック化行列の多項式を用いた共役勾配法の前処理手法の開発
- 共役勾配法の前処理のためのブロック化行列の多項式に関する研究
- 401 シンプレクティック時間積分法の数値流体解析への応用
- 東芝原子力技術研究所