Schwinger-Type Boson Realization for Three Sub-Algebras of the su(4) Algebra : The so(5), the so(4) and the su(2)⊗su(2) Algebra
スポンサーリンク
概要
- 論文の詳細を見る
The Schwinger-type boson realizations of the so(5), so(4) and su(2)【○!X】su(2) algebras are discussed in relation to the su(4) algebra. The basic idea comes from a general form of the Schwinger-type boson representation for the su(n) algebra, which was recently proposed by two of the present authors(M. Y. & A. K. ), with da Providencia. For each algebra, the orthogonal set to obtain a full irreducible representation is derived.
- 理論物理学刊行会の論文
- 2000-08-25
著者
-
KUNIHIRO Teiji
Faculty of Natural Science, Ryukoku University
-
Kuriyama Atsushi
Faculty Of Engineering Kansai University
-
Yamamura Masatoshi
Department Of Pure And Applied Physics Faculty Of Engineering Science Kansai University
-
Kunihiro T
Yukawa Institute For Theoretical Physics Kyoto University:(present Office)department Of Physics Kyot
-
Kuriyama A
Faculty Of Engineering Kansai University
-
Yamamura Masatoshi
Faculty Of Engineering Kansai University
-
Tamiya Kyuichiro
Department Of Physics Kyoto University
-
Kunihiro Teiji
Faculty Of Natural Science Ryukoku University
-
YAMAMURA Masatoshi
Faculty of Engineering ,Kansai University
関連論文
- Pion and σ-Meson at Finite Temperature
- An Orthogonal Set Constituted by Eight Kinds of Boson Operators
- A Note on a Boson Realization in Many-Boson System
- On the Coupling of Two su(1, 1)Spins in the Holstein-Primakoff Type Boson Representation
- On Parametric Resonance in Quantum Many-Body System : Collective Motion and Quantum Fluctuation around It in Coupled Lipkin Model(Nuclear Physics)
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. III : Parameter-Dependent Deformation
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. II : Unified Forms of Boson-Pair Coherent States in Even- and Odd-Boson Systems(Nuclear Physics)
- On the Random Phase Approximation Based on the Thermo Field Dynamics Formalism : Nuclear Physics
- Fermionic Collective Modes in QGP near Critical Temperatures(Hot QCD and QGP, Dense hadronic and quark matter, New Frontiers in QCD-Exotic Hadrons and Hadronic Matter-)
- A Note on Classical Orbits, Collective Submanifold and Quantal Collective Subspace : Progress Letters
- Specification of Collective Submanifold by Adiabatic Time-Dependent Hartree-Fock Method : Coupled Lipkin Model
- Generalized Center of Mass and Relative Motions in Classical Many-Body System : An Example of Solutions of Equations of Collective Submanifold : Nuclear Physics
- Unique Specification of Collective Submanifold : Nuclear Physics
- Chapter X Outlook
- Chapter VII Neutral Pion Condensation in Hot and Dense Nuclear Matter
- Chapter V Toward Realistic Treatment of Neutral Pion-Condensed State
- Quasi-Spin Squeezed State for Lipkin Model : Nuclear Physics
- Time-Dependent Hartree-Fock Method and Its Extension
- Equation of Collective Submanifold for Mixed States : Condensed Matter and Statistical Physics
- A Boson System Interacting with an External Harmonic Oscillator : The su(1,1)-Spin Like Behavior in the su(2)-Spin System : Nuclear Physics
- Three Forms of Coherent States in the su(2)-Spin System and Related Classical Counterparts : Nuclear Physics
- Coherent State Combined with Mixed State for an Imperfect Boson System I : Thermalization of Pure Squeezed Coherent State(Nuclear Physics)
- Imperfect Bose System and Its Mixed State Representation. II : Numerical Analysis with a Short-Range Replusive Force(Nuclear Physics)
- Imperfect Bose System and Its Mixed State Representation. II : Numerical Analysis with a Short-Range Replusive Force
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. I : Various Forms of Boson-Pair Coherent State(Nuclear Physics)
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. I : Various Forms of Boson-Pair Coherent State
- Note on the Orthogonal Set in Six Kinds of Boson Operators : In Relation to the su(1,1)- and Its Relevant Algebras
- A Possible Form of the Orthogonal Set in Six Kinds of Boson Operators : In Relation to the su(2)- and Its Relevant Algebras
- On the Boson Number Operator in the Deformed Boson Scheme
- The su(1,1)-Algebraic Boson Model in the Deformed Boson Scheme : The Second Holstein-Primakoff Representation as q-Deformed Boson Operator(Nuclear Physics)
- The su (1, 1)-Algebraic Boson Model in the Deformed Boson Scheme : The Second Holstein-Primakoff Representation as q-Deformed Boson Operator
- Note on the Deformed Boson Scheme in Four Kinds of Boson Operators
- Even-Odd Effect on the Thermal Equilibrium State of the Pairing Model. II : Mean Field Approximation and Renormalized Distribution
- Even-Odd Effect on the Thermal Equilibrium State of the Pairing Model. I : Comparison between Canonical and Grand Canonical Ensembles
- Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method. IV : The su(2)_q-and the su(1, 1)_q-Algebras in Four Kinds of Boson Operators
- Two Contrastive Boson-Pair Coherent States in Deformed Boson Scheme
- On the Multiboson Coherent State in Deformed Boson Scheme
- Note on the Deformed Boson Scheme in Time-Dependent Variational Method
- Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method. III : Deformation of the su(2,1)-Algebra in Terms of Three Kinds of Boson Operators
- A Novel Quasi-Particle Picture of Massless and Massive Quarks Coupled with a Massive Boson at Finite Temperature and Its Effect on the Dilepton Production Rate(CGC/Lattice QCD/etc.,New Frontiers in QCD 2008-Fundamental Problems in Hot and/or Dense Matter-
- Novel Collective Excitations and the Quasi-Particle Picture of Quarks Coupled with a Massive Boson at Finite Temperature(Nuclear Physics)
- Pseudogap of Color Superconductivity (Poster contributions)
- Some Recent Topics on Possible Chiral Restoration in Nuclear Medium (General overview)
- Chiral and Color-Superconducting Phase Transitions with Vector Interaction in a Simple Model(Prog. Theor. Phys. 108(2002), 929.)
- Chiral Restoration and the Scalar and Vector Correlations in Hot and Dense Matter
- Chiral and Color-Superconducting Phase Transitions with Vector Interaction in a Simple Model
- Schwinger-Type Boson Realization for the su(4) Algebra : In Relation to the Description of Many-Fermion Systems in Pairing Correlation
- Schwinger-Type Boson Realization for Three Sub-Algebras of the su(4) Algebra : The so(5), the so(4) and the su(2)⊗su(2) Algebra
- The Renormalization-Group Method Applied to Asymptotic Analysis of Vector Fields : Condensed Matter and Statistical Physics
- Utility of su(1,1)-Algebra in a Schematic Nuclear su(2)-Model
- Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method.II : Deformation of the su(2)- and the su(1, 1)-Algebras in the Schwinger Boson Representation
- Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method.I : The Case of Many-Body Systems Consisting of One Kind of Boson Operator
- A Possible Boson Realization of Generalized Lipkin Model for Many-Fermion System : The su(M+1)-Algebraic Model in Non-Symmetric Boson Representation
- Renormalization-Group Resummation of a Divergent Series of the Perturbative Wave Functions of Quantum Systems
- Some Phenomenological Properties of the Chiral Transition in QCD
- Chiral Symmetry and Scalar Meson in Hadron and Nuclear Physics
- A Note on Collective Variables Determined by Equations of Collective Submanifold : In Relation to Tomonaga Theory of Collective Motion : Nuclear Physics
- Canonical Formulation of Time-Dependent Hartree-Fock Method : Nuclear Physics
- Generalization of Equation of Collective Submanifold : A Theory of Large Amplitude Collective Motion and Its Coupling with Intrinsic Degrees of Freedom : Nuclear Physics
- Canonical Coordinate System Suitable for Adiabatic Treatment of Collective Motion : General Case : Nuclear Physics
- Minimal Uncertainty in Quantal System Obeying the su(2)-Algebra : Nuclear Physics
- Pairing Model and Mixed State Representation. II : Grand Partition Function and Its Mean Field Approximation
- Pairing Model and Mixed State Representation. I : Thermal Equilibrium State
- Canonical Formulation of Mixed State and Irreducible Representation of u(M) Algebra
- Time-Evolution of the Cohererut and the Squeezed States of Many-Body Systems Based on the Basic Idea of the Boson Mapping and the TDHF Method
- Imperfect Bose System and Its Mixed State Representation. I : Thermal Equilibrium State of Imperfect Bose System
- The Lipkin Model in a New Boson Realization : Basic Idea
- A Possible Description of Many-Body System Composed of Four Kinds of Boson Operators : In Relation to the su(2)- and the su(1,1)-Algebraic Model
- On the Schwinger Boson Representation of an Extended (M+1)(N+1)-Dimensional Algebra Containing the su(M+1)- and the su(N,1)-Algebra
- Canonicity Condition and Its Favourite Form of Collective Hamiltonian
- A Possible Description of Classical Motion in Quantal Systems
- Description of Mixed States Based on the Time-Dependent Hartree-Fock Theory. II : Classical Boson Expansion : Nuclear Physics
- Description of Mixed States Based on the Time-Dependent Hartree-Fock Theory. I : Formalism of Thermo Field Dynamics in Canonical Theory with Constraints : Nuclear Physics
- Equations of Collective Submanifold for Large Amplitude Collective Motion and Its Coupling with Intrinsic Degrees of Freedom. III : Nuclear Physics
- Instability of Thermal Equilibrium State of the Lipkin Model : Nuclear Physics
- On the q-Boson Realization of the su_q(2) and su_q(1,1) Algebras : The Marumori-Yamamura-Tokunaga Method : Nuclear Physics
- A Boson System Interacting with an External Harmonic Oscillator : A Possible Description of Statistically Mixed State
- A Possible Description of Many-Body System Composed of Three Kinds of Boson Operators : The su(2,1)-Boson Model : Neuclear Physics
- Modification of the Conventional Holstein-Primakoff Boson Representation for the su(1,1)-Algebra and Its Classical Counterpart
- Three Forms of Boson Expansions for the su(2)-Spin System and Their c-Number Counterparts : Nuclear Physics
- Thermal Effect in the Lipkin Model. III : Dynamical Fluctuation of Thermal Equilibrium State
- Thermal Effect in Lipkin Model. II : Grand Partition Function and Mean Field Approximation
- Note on Boson Expansion and Boson Coherent State for the su(2)-Spin System
- Thermal Effect in Lipkin Model. I : Thermal Equilibrium State and Phase Transition : Nuclear Physics
- Description of Thermal Effects in su(1, 1)-Algebraic Model Derived from Nuclear su(2) -Model
- On the Hamiltonians Expressed in Terms of su (1, 1)-Generators for Describing Thermal Effects in Nuclear su(2) -Models
- Investigation of the Minimal Uncertainty Appearing in the Quasi-Spin Coherent and the Quasi-Spin Squeezed State of Many-Fermion System : The Case of Many-Nucleon System in Pairing Correlation : Nuclear Physics
- Thermal Effects and Dissipation in su(1, 1)-Algebraic Model by Means of Time-Dependent Variational Approach : Nuclear Physics
- A Possible Classical Description for su(1, 1)-Spin Systems : Nuclear Physics
- On the Coherent and the Squeezed State in the su(2)-Boson Model : Nuclear Physics
- On the Canonical Equivalence of Classical Boson Expansions for Mixed States : Nuclear Physics
- Application of the Canonical Theory of Mixed State to the Description of Bound State of the Nucleus. II : Schematic Model and Physical Ingredients of Constraints : Nuclear Physics
- Description of Mixed States Based on the Time-Dependent Hartree-Fock Theory. III : Random Phase Approximation and Its First Order Corrections : Nuclear Physics
- Application of the Canonical Theory of Mixed State to the Description of Bound States of the Nucleus. I : Reformulation of the Theory of Mixed State : Nuclear Physics
- Two Types of Schrodinger Time Evolution in the Formalism of Thermo Field Dynamics and Their Equivalence to the Liouville-von Neumann Equation
- Schwinger-Type Boson Realization for the su(4) Algebra : In Relation to the Description of Many-Fermion Systems in Pairing Correlation
- Schwinger-Type Boson Realization for Three Sub-Algebras of the su(4) Algebra : The so(5), the so(4) and the su(2) 【cross product】 su(2) Algebra
- Pre-Critical Phenomena of Two-Flavor Color Superconductivity in Heated Quark Matter : Diquark-Pair Fluctuations and Non-Fermi Liquid Behavior(Nuclear Physics)
- Non-Equilibrium Critical Dynamics and Precursory Phenomena in Color Superconductivity(Proceedings of the YITP Workshop on Nuclear Matter under Extreme Conditions)
- A Geometrical Formulation of the Renormalization Group Method for Global Analysis : General and Mathematical Physics