Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method. IV : The su(2)_q-and the su(1, 1)_q-Algebras in Four Kinds of Boson Operators
スポンサーリンク
概要
- 論文の詳細を見る
The basic idea presented in Parts (I)-(III) of this series for the deformed boson scheme is applied to the case of the su(2)-and the su(1, 1)-algebras for describing many-body systems consisting of four kinds of boson operators. A possible form of the coherent state given by the present authors is generalized and the su(2)_q-and the su(1, 1)_q-algebras are obtained in forms expressed in terms of four kinds of boson operators. As an illustrative example demonstrating the application of the deformed boson scheme, the framework for describing thermal effects observed in the two-level shell model with pairing correlation is proposed.
- 理論物理学刊行会の論文
- 2002-08-25
著者
-
TSUE Yasuhiko
Physics Division, Faculty of Science, Kochi University
-
PROVIDENCIA Joao
Departmento de Fisica, Universidade de Coimbra
-
PROVIDENCIA Constanca
Departmento de Fisica, Universidade de Coimbra
-
Providencia Joao
Departamento De Fisica Universidade De Coimbra
-
Providencia C
Departmento De Fisica Universidade De Coimbra
-
Constanca Providencia
Departamento De Fisica Universidade De Coimbra
-
Providencia Constanca
Departamento De Fisica Universidade De Coimbra
-
YAMAMURA Masatoshi
Faculty of Engineering, Kansai University
-
KURIYAMA Atsushi
Faculty of Engineering, Kansai University
-
Kuriyama Atsushi
Faculty Of Engineering Kansai University
-
Yamamura Masatoshi
Department Of Pure And Applied Physics Faculty Of Engineering Science Kansai University
-
Tsue Yasuhiko
Physics Division Faculty Of Science Kochi University
-
Providencia C
Univ. Coimbra Coimbra Prt
-
Kuriyama A
Faculty Of Engineering Kansai University
-
Yamamura Masatoshi
Faculty Of Engineering Kansai University
-
KURIYAMA Atushi
Faculty of Engineering, Kansai University
-
Da Providencia
Departamento De Fisica Centro De Fisica Computacional Faculdade De Ciencias E Tecnologia Universidade De Coimbra
-
YAMAMURA Masatoshi
Depertment of Physics, Kyoto University
-
YAMAMURA Masatoshi
Faculty of Engineering ,Kansai University
-
PROVIDENCIA Joao
Departamento de Fisica,Universidade de Coimbra
-
PROVIDENCIA Joao
Departamento de Fisica, Unversidade de Coimbra
-
KURIYAMA Atsushi
Faculty of Engineering, Kansai Universidade
-
KURIYAMA Atsushi
Department of Physics, Kyusyu University
-
KURIYAMA Atsushi
Department of Physics, Kyushu University /Department of Physics, Kyoto University
-
KURIYAMA Atushi
Department of Physics, Kyushu University
-
PROVIDENCIA Constanca
Departament de Fisica, Universidade de Coimbra
関連論文
- First-Order Quark-Hadron Phase-Transition in a NJL-Type Model for Nuclear and Quark Matter : The Case of Symmetric Nuclear Matter(Nuclear Physics)
- Approach to a Fermionic SO(2N+2) Rotator Based on the SO(2N+1) Lie Algebra of the Fermion Operators (arXiv:1010.1642v1)
- A Refined Numerical Result on the First Excitation Energy in the Two-Level Pairing Model(Nuclear Physics)
- Classical and Quantal Descriptions of Small Amplitude Fluctuations around Equilibriums in the Two-Level Pairing Model(Nuclear Physics)
- The Lipkin Model in Many-Fermion System as an Example of the su(1, 1) ⊗ su(1, 1)-Algebraic Model(Nuclear Physics)
- A Note on the Two-Level Pairing Model Obeying the su (2) ⊗ su (2)-Algebra : Re-formation in Terms of the su (1, 1) ⊗ su (1, 1)-Algebra(Nuclear Physics)
- A New Boson Realization of the Two-Level Pairing Model in a Many-Fermion System and Its Classical Counterpart : The Role of the su (2) ⊗ su (1, 1)-Coherent State in the Schwinger Boson Representation for the su (2) ⊗ su (2)-Algebra(Nuclear P
- Note on Many-Quark Model with su(4) Algebraic Structure(Nuclear Physics)
- On the Exact Eigenstates and the Ground States Based on the Boson Realization for Many-Quark Model with su(4) Algebraic Structure(Nuclear Physics)
- Many-Quark Model with su(4) Algebraic Structure : An Example of Analytically Soluble Many-Fermion System(Nuclear Physics)
- Semi-Classical Approach to the Two-Level Pairing Model : Various Aspects of Phase Change(Nuclear Physics)
- Boson Realization of the su (3)-Algebra. IV : Holstein-Primakoff Representation for the Elliott Model (Nuclear Physics)
- Boson Realization of the su (3)-Algebra. III : Schwinger Representation for the Elliott Model (Nuclear Physics)
- Boson Realization of the su(3)-Algebra. II : Holstein-Primakoff Representation for the Lipkin Model(Nuclear Physics)
- Boson Realization of the su(3)-Algebra. I : Schwinger Representation for the Lipkin Model(Nuclear Physics)
- The Lipkin Model in the su(M+1)-Algebra for Many-Fermion System and Its Counterpart in the Schwinger Boson Representation(Nuclear Physics)
- A Possible Boson Realization of the so(4)-and the so(3, 1)-Algebra : In Relation to the Runge-Lenz-Pauli Vector(Nuclear Physics)
- A Note on the Eigenvalue Problem in the su(1, 1)-Algebra(Nuclear Physics)
- On the Eigenvalue Problem of the su(1,1)-Algebra and the Coupling Scheme of Two su(1,1)-Spins(Nuclear Physics)
- Coupling Schemes for an n su(2) Spin System(Nuclear Physics)
- The Heisenberg Antiferromagnet : An Explicitly Rotational Invariant Formulation(Condensed Matter and Statistical Physics)
- On Parametric Resonance in Quantum Many-Body System : Collective Motion and Quantum Fluctuation around It in Coupled Lipkin Model(Nuclear Physics)
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. III : Parameter-Dependent Deformation
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. II : Unified Forms of Boson-Pair Coherent States in Even- and Odd-Boson Systems(Nuclear Physics)
- Note on the Orthogonal Set in Six Kinds of Boson Operators : In Relation to the su (1,1)-and Its Relevant Algebras
- Fermionic Squeezed State for the O(4) Model as a Schematic Model in a Many-Fermion System(Nuclear Physics)
- A Possible Extension of a Trial State in the TDHF Theory with a Canonical Form to the Lipkin Model : Canonicity Conditions and Dynamical Treatment of Classical and Quantal Variables in an Extended State of the su(2)-Coherent State(Nuclear Physics)
- Time-Evolution of a Collective Meson Field by Use of a Squeezed State
- Amplification of Quantum Meson Modes in the Late Time of the Chiral Phase Transition(Nuclear Physics)
- Variational Approach to the Chiral Phase Transition in the Linear Sigma Model
- Time-Dependent Variational Approach to the Non-Abelian Pure Gauge Theory : Its Application to Evaluation of the Shear Viscosity of Quantum Gluonic Matter(Nuclear Physics)
- A Boson System Interacting with an External Harmonic Oscillator : The su(1,1)-Spin Like Behavior in the su(2)-Spin System : Nuclear Physics
- Effective Potential Study of the Chiral Phase Transition in a QCD-Like Theory(Nuclear Physics)
- Imperfect Bose System and Its Mixed State Representation. II : Numerical Analysis with a Short-Range Replusive Force(Nuclear Physics)
- Imperfect Bose System and Its Mixed State Representation. II : Numerical Analysis with a Short-Range Replusive Force
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. I : Various Forms of Boson-Pair Coherent State(Nuclear Physics)
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. I : Various Forms of Boson-Pair Coherent State
- Note on the Orthogonal Set in Six Kinds of Boson Operators : In Relation to the su(1,1)- and Its Relevant Algebras
- A Possible Form of the Orthogonal Set in Six Kinds of Boson Operators : In Relation to the su(2)- and Its Relevant Algebras
- On the Boson Number Operator in the Deformed Boson Scheme
- The su(1,1)-Algebraic Boson Model in the Deformed Boson Scheme : The Second Holstein-Primakoff Representation as q-Deformed Boson Operator(Nuclear Physics)
- The su (1, 1)-Algebraic Boson Model in the Deformed Boson Scheme : The Second Holstein-Primakoff Representation as q-Deformed Boson Operator
- Note on the Deformed Boson Scheme in Four Kinds of Boson Operators
- Even-Odd Effect on the Thermal Equilibrium State of the Pairing Model. II : Mean Field Approximation and Renormalized Distribution
- Even-Odd Effect on the Thermal Equilibrium State of the Pairing Model. I : Comparison between Canonical and Grand Canonical Ensembles
- Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method. IV : The su(2)_q-and the su(1, 1)_q-Algebras in Four Kinds of Boson Operators
- Two Contrastive Boson-Pair Coherent States in Deformed Boson Scheme
- On the Multiboson Coherent State in Deformed Boson Scheme
- Note on the Deformed Boson Scheme in Time-Dependent Variational Method
- Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method. III : Deformation of the su(2,1)-Algebra in Terms of Three Kinds of Boson Operators
- Utility of su(1,1)-Algebra in a Schematic Nuclear su(2)-Model
- On the Color-Singlet States in Many-Quark Model with the su(4)-Algebraic Structure. III : Transition from the Quark-Triplet to the Quark-Pair Phase(Nuclear Physics)
- On the Color-Singlet States in Many-Quark Model with the su(4)-Algebraic Structure. II : Determination of Ground-State Energies(Nuclear Physics)
- On the Color-Singlet States in Many-Quark Model with the su(4)-Algebraic Structure. I : Color-Symmetric Form(Nuclear Physics)
- Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method.II : Deformation of the su(2)- and the su(1, 1)-Algebras in the Schwinger Boson Representation
- Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method.I : The Case of Many-Body Systems Consisting of One Kind of Boson Operator
- A Possible Boson Realization of Generalized Lipkin Model for Many-Fermion System : The su(M+1)-Algebraic Model in Non-Symmetric Boson Representation
- Pairing Model and Mixed State Representation. II : Grand Partition Function and Its Mean Field Approximation
- Pairing Model and Mixed State Representation. I : Thermal Equilibrium State
- Canonical Formulation of Mixed State and Irreducible Representation of u(M) Algebra
- Time-Evolution of the Cohererut and the Squeezed States of Many-Body Systems Based on the Basic Idea of the Boson Mapping and the TDHF Method
- Imperfect Bose System and Its Mixed State Representation. I : Thermal Equilibrium State of Imperfect Bose System
- The Lipkin Model in a New Boson Realization : Basic Idea
- A Possible Description of Many-Body System Composed of Four Kinds of Boson Operators : In Relation to the su(2)- and the su(1,1)-Algebraic Model
- On the Schwinger Boson Representation of an Extended (M+1)(N+1)-Dimensional Algebra Containing the su(M+1)- and the su(N,1)-Algebra
- Description of Mixed States Based on the Time-Dependent Hartree-Fock Theory. I : Formalism of Thermo Field Dynamics in Canonical Theory with Constraints : Nuclear Physics
- Note on the Minimum Weight States in the su(2)-Algebraic Many-Fermion Model : Extension of the Role of the Auxiliary su(2)-Algebra(Nuclear Physics)
- Background of the su(2)-Algebraic Many-Fermion Models in the Boson Realization : Construction of Minimum Weight States by Means of an Auxiliary su(2)-Algebra and Its Related Problems(Nuclear Physics)
- Color-Singlet Three-Quark States in the su(4)-Algebraic Many-Quark Model : An Example of the su(4) ⨂ su(4)-Model(Nuclear Physics)
- Re-Formation of Many-Quark Model with the su(4)-Algebraic Structure in the Schwinger Boson Realization : Reconsideration in the Original Fermion Space(Nuclear Physics)
- Instability of Thermal Equilibrium State of the Lipkin Model : Nuclear Physics
- On the q-Boson Realization of the su_q(2) and su_q(1,1) Algebras : The Marumori-Yamamura-Tokunaga Method : Nuclear Physics
- A Boson System Interacting with an External Harmonic Oscillator : A Possible Description of Statistically Mixed State
- A Possible Description of Many-Body System Composed of Three Kinds of Boson Operators : The su(2,1)-Boson Model : Neuclear Physics
- Modification of the Conventional Holstein-Primakoff Boson Representation for the su(1,1)-Algebra and Its Classical Counterpart
- Three Forms of Boson Expansions for the su(2)-Spin System and Their c-Number Counterparts : Nuclear Physics
- Thermal Effect in the Lipkin Model. III : Dynamical Fluctuation of Thermal Equilibrium State
- Thermal Effect in Lipkin Model. II : Grand Partition Function and Mean Field Approximation
- Thermal Effect in Lipkin Model. I : Thermal Equilibrium State and Phase Transition : Nuclear Physics
- On the Canonical Equivalence of Classical Boson Expansions for Mixed States : Nuclear Physics
- Application of the Canonical Theory of Mixed State to the Description of Bound State of the Nucleus. II : Schematic Model and Physical Ingredients of Constraints : Nuclear Physics
- Description of Mixed States Based on the Time-Dependent Hartree-Fock Theory. III : Random Phase Approximation and Its First Order Corrections : Nuclear Physics
- Application of the Canonical Theory of Mixed State to the Description of Bound States of the Nucleus. I : Reformulation of the Theory of Mixed State : Nuclear Physics
- Two Types of Schrodinger Time Evolution in the Formalism of Thermo Field Dynamics and Their Equivalence to the Liouville-von Neumann Equation
- Effective Potential Approach to Quark Ferromagnetization in High Density Quark Matter(Nuclear Physics)
- The BCS-Bogoliubov and the su(2)-Algebraic Approach to the Pairing Model in Many-Fermion System : The Quasiparticle in the Conservation of the Fermion Number(Nuclear Physics)
- A Role of the Quasiparticle in the Conservation of the Fermion Number : An Example Illustrative of the Deformation of the Cooper Pair(Nuclear Physics)
- On the Color-Singlet States in Many-Quark Model with the su(4)-Algebraic Structure. I : Color-Symmetric Form
- First-Order Quark-Hadron Phase-Transition in a NJL-Type Model for Nuclear and Quark Matter : The Case of Symmetric Nuclear Matter
- A Boson System Interacting with an External Harmonic Oscillator : A Possible Description of Statistically Mixed State
- A Possible Description of Many-Body System Composed of Three Kinds of Boson Operators : The su(2,1)-Boson Model : Neuclear Physics
- The Lipkin Model in the su(M+1)-Algebra for Many-Fermion System and Its Counterpart in the Schwinger Boson Representation(Nuclear Physics)
- Coupling Schemes for an n su(2) Spin System(Nuclear Physics)
- A Note on the Eigenvalue Problem in the su(1, 1)-Algebra(Nuclear Physics)
- A Possible Boson Realization of the so(4)-and the so(3, 1)-Algebra : In Relation to the Runge-Lenz-Pauli Vector(Nuclear Physics)
- A Possible Extension of a Trial State in the TDHF Theory with a Canonical Form to the Lipkin Model : Canonicity Conditions and Dynamical Treatment of Classical and Quantal Variables in an Extended State of the su(2)-Coherent State(Nuclear Physics)
- Fermionic Squeezed State for the O(4) Model as a Schematic Model in a Many-Fermion System(Nuclear Physics)
- Time-Dependent Variational Approach to the Non-Abelian Pure Gauge Theory : Its Application to Evaluation of the Shear Viscosity of Quantum Gluonic Matter
- Amplification of Quantum Meson Modes in the Late Time of the Chiral Phase Transition(Nuclear Physics)
- On the Eigenvalue Problem of the su(1,1)-Algebra and the Coupling Scheme of Two su(1,1)-Spins(Nuclear Physics)