YAMAMURA Masatoshi | Faculty of Engineering, Kansai University
スポンサーリンク
概要
関連著者
-
YAMAMURA Masatoshi
Faculty of Engineering, Kansai University
-
Yamamura Masatoshi
Faculty Of Engineering Kansai University
-
Yamamura Masatoshi
Department Of Pure And Applied Physics Faculty Of Engineering Science Kansai University
-
YAMAMURA Masatoshi
Faculty of Engineering ,Kansai University
-
Providencia Joao
Departamento De Fisica Universidade De Coimbra
-
KURIYAMA Atsushi
Faculty of Engineering, Kansai University
-
Kuriyama Atsushi
Faculty Of Engineering Kansai University
-
TSUE Yasuhiko
Physics Division, Faculty of Science, Kochi University
-
PROVIDENCIA Joao
Departmento de Fisica, Universidade de Coimbra
-
Providencia C
Departmento De Fisica Universidade De Coimbra
-
Constanca Providencia
Departamento De Fisica Universidade De Coimbra
-
Providencia Constanca
Departamento De Fisica Universidade De Coimbra
-
Tsue Yasuhiko
Physics Division Faculty Of Science Kochi University
-
PROVIDENCIA Constanca
Departmento de Fisica, Universidade de Coimbra
-
Providencia C
Univ. Coimbra Coimbra Prt
-
Kuriyama A
Faculty Of Engineering Kansai University
-
YAMAMURA Masatoshi
Depertment of Physics, Kyoto University
-
PROVIDENCIA Constanca
Departament de Fisica, Universidade de Coimbra
-
PROVIDENCIA Joao
Departamento de Fisica,Universidade de Coimbra
-
PROVIDENCIA Joao
Departamento de Fisica, Unversidade de Coimbra
-
PROVIDENCIA Joao
Deparatmento de Fisica, Universidate de Coimbra
-
KURIYAMA Atushi
Faculty of Engineering, Kansai University
-
KURIYAMA Atsushi
Faculty of Engineering, Kansai Universidade
-
KURIYAMA Atsushi
Department of Physics, Kyusyu University
-
KURIYAMA Atsushi
Department of Physics, Kyushu University /Department of Physics, Kyoto University
-
KURIYAMA Atushi
Department of Physics, Kyushu University
-
Providencia Joao
Departmento De Fisica Universidade De Coimbra
-
TSUE Yasuhiko
Department of Physics, Kyoto University
-
Tsue Y
Physics Division Faculty Of Science Kochi University
-
Da Providencia
Departamento De Fisica Centro De Fisica Computacional Faculdade De Ciencias E Tecnologia Universidade De Coimbra
-
YAMAMURA Masatoshi
Department of Pure and Applied Physics, Faculty of Engineering Science, Kansai University
-
YAMAMURA Masatoshi
Department of Physics, Kyoto University : Faculty of Engineering, Kansai University
-
TSUE Yasuhiko
Departamento de Fisica,Universidade de Coimbra
-
PROVIDENCIA Constanca
Dpartamento de Fisica, Universidade de Coimbra
-
PROVIDENCIA Constancia
Departmento de Fisica, Universidade de Coimbra
-
Da Providencia
Universidade De Coimbra Coimbra Prt
-
da PROVIDENCIA
Departamento de Fisica, Universidade de Coimbra
-
PROVIDENCIA Constanga
Departamento de Fisica, Universidade de Coimbra
-
Tsue Yasuhiko
Department Of Physics Kyoto University
-
PROVIDENCIA Joao
Dpartamento de Fisica, Universidade de Coimbra
-
TSUE Yasuhiro
Department of Physics, Kochi University
-
PROVIDENCIA Joao
Departament de Fisica, Universidade de Coimbra
-
Iida S
Kyoto Univ.
-
IIDA Shinji
Department of Physics, Kyoto University
-
Iida Shinji
Department Of Physics Kyoto University
-
Iida S
Institute For Nuclear Study University Of Tokyo
-
Da Providencia
Departamento De Fisica Universidade De Coimbra
-
PROVIDENCIA Joao
Department of Fisica, Universidade de Coimbra
-
Joao Da
Departamento De Fisica Universidade De Coimbra
-
NISHIYAMA Seiya
Physics Division, Faculty of Science, Kochi University
-
Nishiyama Seiya
Physics Division Faculty Of Science Kochi University
-
FIOLHAIS Calos
Department de Fisica,Universidade de Coimbra
-
TSUE Masahiko
Physics Division, Faculty of Science, Kochi University
-
Tsue Masahiko
Physics Division Faculty Of Science Kochi University
-
PROVIDENCIA Constanca
Departamento de Fisica, Universidade de Coimbra
-
Azuma Nobuyuki
Department Of Cardiology St. Marianna University School Of Medicine
-
Azuma Nobuyuki
Department Of Aerospace Engineering Nagoya University
-
Azuma Nobuyuki
Department Of Physics Kochi University
-
BRAJCZEWSKA Marta
Departamento de Fisica, Universidade de Coimbra
-
FIOLHAIS Carlos
Departamento de Fisica, Universidade de Coimbra
-
Kuriyama Atsushi
Department Of Physics Kyoto University
-
Brajczewska Marta
Departamento De Fisica Universidade De Coimbra
-
Fiolhais Carlos
Departamento De Fisica Universidade De Coimbra
-
Fiolhais C
Univ. Coimbra Coimbra
-
PROVIDENCIA Jao
Department de Fisica,Universidade de Coimbra
-
Providencia da
Departamento de Fisica,Unzversidade de Coimbra
-
Providencia Jao
Department De Fisica Universidade De Coimbra
-
PROVIDENCIA Joao
Departamento de Fisica, Universidade de Coimbra
-
Joao da
Departamento de Fisica, Universidade de Coimbra
-
PROVIDENCIA Joao
Departamento de Fisica, Universidade da Beira Interior
-
Kuriyuama Atsushi
Faculty of Engineering, Kansai University
-
TSUE Yasuhiko
Department of Material Science, Kochi University
-
TSUE Yasuhiko
Physics Division, Faculty of Science, Koch University
-
AZUMA Nobuyuki
Department of Physics, Kochi University
-
Constanca PROVIDENCIA
Departamento de Fisica, Universidade de Coimbra
-
FIOLHAIS Calos
Departamento de Fisica, Universidade de Coimbra
著作論文
- A Refined Numerical Result on the First Excitation Energy in the Two-Level Pairing Model(Nuclear Physics)
- Classical and Quantal Descriptions of Small Amplitude Fluctuations around Equilibriums in the Two-Level Pairing Model(Nuclear Physics)
- The Lipkin Model in Many-Fermion System as an Example of the su(1, 1) ⊗ su(1, 1)-Algebraic Model(Nuclear Physics)
- A Note on the Two-Level Pairing Model Obeying the su (2) ⊗ su (2)-Algebra : Re-formation in Terms of the su (1, 1) ⊗ su (1, 1)-Algebra(Nuclear Physics)
- A New Boson Realization of the Two-Level Pairing Model in a Many-Fermion System and Its Classical Counterpart : The Role of the su (2) ⊗ su (1, 1)-Coherent State in the Schwinger Boson Representation for the su (2) ⊗ su (2)-Algebra(Nuclear P
- Semi-Classical Approach to the Two-Level Pairing Model : Various Aspects of Phase Change(Nuclear Physics)
- Boson Realization of the su (3)-Algebra. IV : Holstein-Primakoff Representation for the Elliott Model (Nuclear Physics)
- Boson Realization of the su (3)-Algebra. III : Schwinger Representation for the Elliott Model (Nuclear Physics)
- Boson Realization of the su(3)-Algebra. II : Holstein-Primakoff Representation for the Lipkin Model(Nuclear Physics)
- Boson Realization of the su(3)-Algebra. I : Schwinger Representation for the Lipkin Model(Nuclear Physics)
- The Lipkin Model in the su(M+1)-Algebra for Many-Fermion System and Its Counterpart in the Schwinger Boson Representation(Nuclear Physics)
- A Possible Boson Realization of the so(4)-and the so(3, 1)-Algebra : In Relation to the Runge-Lenz-Pauli Vector(Nuclear Physics)
- A Note on the Eigenvalue Problem in the su(1, 1)-Algebra(Nuclear Physics)
- On the Eigenvalue Problem of the su(1,1)-Algebra and the Coupling Scheme of Two su(1,1)-Spins(Nuclear Physics)
- Coupling Schemes for an n su(2) Spin System(Nuclear Physics)
- The Heisenberg Antiferromagnet : An Explicitly Rotational Invariant Formulation(Condensed Matter and Statistical Physics)
- An Orthogonal Set Constituted by Eight Kinds of Boson Operators
- A Note on a Boson Realization in Many-Boson System
- On the Coupling of Two su(1, 1)Spins in the Holstein-Primakoff Type Boson Representation
- On Parametric Resonance in Quantum Many-Body System : Collective Motion and Quantum Fluctuation around It in Coupled Lipkin Model(Nuclear Physics)
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. III : Parameter-Dependent Deformation
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. II : Unified Forms of Boson-Pair Coherent States in Even- and Odd-Boson Systems(Nuclear Physics)
- Note on the Orthogonal Set in Six Kinds of Boson Operators : In Relation to the su (1,1)-and Its Relevant Algebras
- On the Random Phase Approximation Based on the Thermo Field Dynamics Formalism : Nuclear Physics
- A Note on Classical Orbits, Collective Submanifold and Quantal Collective Subspace : Progress Letters
- Specification of Collective Submanifold by Adiabatic Time-Dependent Hartree-Fock Method : Coupled Lipkin Model
- Generalized Center of Mass and Relative Motions in Classical Many-Body System : An Example of Solutions of Equations of Collective Submanifold : Nuclear Physics
- Unique Specification of Collective Submanifold : Nuclear Physics
- Quasi-Spin Squeezed State for Lipkin Model : Nuclear Physics
- Time-Dependent Hartree-Fock Method and Its Extension
- Equation of Collective Submanifold for Mixed States : Condensed Matter and Statistical Physics
- A Boson System Interacting with an External Harmonic Oscillator : The su(1,1)-Spin Like Behavior in the su(2)-Spin System : Nuclear Physics
- Imperfect Bose System and Its Mixed State Representation. II : Numerical Analysis with a Short-Range Replusive Force(Nuclear Physics)
- Imperfect Bose System and Its Mixed State Representation. II : Numerical Analysis with a Short-Range Replusive Force
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. I : Various Forms of Boson-Pair Coherent State(Nuclear Physics)
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. I : Various Forms of Boson-Pair Coherent State
- Note on the Orthogonal Set in Six Kinds of Boson Operators : In Relation to the su(1,1)- and Its Relevant Algebras
- A Possible Form of the Orthogonal Set in Six Kinds of Boson Operators : In Relation to the su(2)- and Its Relevant Algebras
- On the Boson Number Operator in the Deformed Boson Scheme
- The su(1,1)-Algebraic Boson Model in the Deformed Boson Scheme : The Second Holstein-Primakoff Representation as q-Deformed Boson Operator(Nuclear Physics)
- The su (1, 1)-Algebraic Boson Model in the Deformed Boson Scheme : The Second Holstein-Primakoff Representation as q-Deformed Boson Operator
- Note on the Deformed Boson Scheme in Four Kinds of Boson Operators
- Even-Odd Effect on the Thermal Equilibrium State of the Pairing Model. II : Mean Field Approximation and Renormalized Distribution
- Even-Odd Effect on the Thermal Equilibrium State of the Pairing Model. I : Comparison between Canonical and Grand Canonical Ensembles
- Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method. IV : The su(2)_q-and the su(1, 1)_q-Algebras in Four Kinds of Boson Operators
- Two Contrastive Boson-Pair Coherent States in Deformed Boson Scheme
- On the Multiboson Coherent State in Deformed Boson Scheme
- Note on the Deformed Boson Scheme in Time-Dependent Variational Method
- Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method. III : Deformation of the su(2,1)-Algebra in Terms of Three Kinds of Boson Operators
- Time-Evolution of the Cohererut and the Squeezed States of Many-Body Systems Based on the Basic Idea of the Boson Mapping and the TDHF Method
- A Canonical Coordinate System Suitable for Adiabatic Treatment of Collective Motion : An Illustrative Model