PROVIDENCIA Joao | Deparatmento de Fisica, Universidate de Coimbra
スポンサーリンク
概要
関連著者
-
PROVIDENCIA Joao
Deparatmento de Fisica, Universidate de Coimbra
-
YAMAMURA Masatoshi
Faculty of Engineering ,Kansai University
-
Providencia Joao
Departamento De Fisica Universidade De Coimbra
-
Yamamura Masatoshi
Department Of Pure And Applied Physics Faculty Of Engineering Science Kansai University
-
Providencia Constanca
Departamento De Fisica Universidade De Coimbra
-
PROVIDENCIA Constanca
Departament de Fisica, Universidade de Coimbra
-
PROVIDENCIA Joao
Departamento de Fisica,Universidade de Coimbra
-
Yamamura Masatoshi
Faculty Of Engineering Kansai University
-
PROVIDENCIA Joao
Departamento de Fisica, Unversidade de Coimbra
-
TSUE Yasuhiko
Physics Division, Faculty of Science, Kochi University
-
Tsue Yasuhiko
Physics Division Faculty Of Science Kochi University
-
Kuriyama Atsushi
Faculty Of Engineering Kansai University
-
PROVIDENCIA Constanca
Departmento de Fisica, Universidade de Coimbra
-
Constanca Providencia
Departamento De Fisica Universidade De Coimbra
-
Providencia C
Departmento De Fisica Universidade De Coimbra
-
Kuriyama A
Faculty Of Engineering Kansai University
-
YAMAMURA Masatoshi
Depertment of Physics, Kyoto University
-
TSUE Yasuhiko
Departamento de Fisica,Universidade de Coimbra
-
TSUE Yasuhiko
Department of Physics, Kyoto University
-
PROVIDENCIA Joao
Departmento de Fisica, Universidade de Coimbra
-
Providencia C
Univ. Coimbra Coimbra Prt
-
YAMAMURA Masatoshi
Faculty of Engineering, Kansai University
-
PROVIDENCIA Joao
Departament de Fisica, Universidade de Coimbra
-
PROVIDENCIA Joao
Dpartamento de Fisica, Universidade de Coimbra
-
PROVIDENCIA Joao
Department of Fisica, Universidade de Coimbra
-
KURIYAMA Atsushi
Faculty of Engineering, Kansai University
-
PROVIDENCIA Constancia
Departmento de Fisica, Universidade de Coimbra
-
Tsue Y
Physics Division Faculty Of Science Kochi University
-
PROVIDENCIA Constanca
Dpartamento de Fisica, Universidade de Coimbra
-
TSUE Yasuhiro
Department of Physics, Kochi University
-
KURIYAMA Atushi
Faculty of Engineering, Kansai University
-
Yamamura Masatoshi
Department Of Physics Kyoto University
-
KURIYAMA Atsushi
Faculty of Engineering, Kansai Universidade
-
KURIYAMA Atsushi
Department of Physics, Kyusyu University
-
KURIYAMA Atsushi
Department of Physics, Kyushu University /Department of Physics, Kyoto University
-
KURIYAMA Atushi
Department of Physics, Kyushu University
-
YAMAMURA Masatoshi
Department of Pure and Applied Physics, Faculty of Engineering Science, Kansai University
-
Providencia Joao
Departmento De Fisica Universidade De Coimbra
-
YAMAMURA Masatoshi
Department of Physics, Kyoto University : Faculty of Engineering, Kansai University
-
Tsue Yasuhiko
Department Of Physics Kyoto University
-
PROVIDENCIA Constanga
Departamento de Fisica, Universidade de Coimbra
-
Joao Da
Departamento De Fisica Universidade De Coimbra
-
Da Providencia
Departamento De Fisica Centro De Fisica Computacional Faculdade De Ciencias E Tecnologia Universidade De Coimbra
-
PROVIDENCIA Constanca
Departamento de Fisica, Universidade de Coimbra
-
Da Providencia
Universidade De Coimbra Coimbra Prt
-
Nishiyama Seiya
Physics Division Faculty Of Science Kochi University
-
Da Providencia
Departamento De Fisica Universidade De Coimbra
-
PROVIDENCIA Joaoda
Departamento de Fisica, Universidade de Coimbra
-
Providencia Joaoda
Departamento De Fisica Universidade De Coimbra
-
西山 精哉
Coimbra大
-
西山 精哉
Departamento de Fisica, Universidade de Coimbra
-
BRAJCZEWSKA Marta
Departamento de Fisica, Universidade de Coimbra
-
Brajczewska Marta
Departamento De Fisica Universidade De Coimbra
-
AKAIKE Hideaki
Department of Applied Science, Kochi University
-
Akaike Hideaki
Physics Division Faculty Of Science Kochi University
-
TSUE Masahiko
Physics Division, Faculty of Science, Kochi University
-
Tsue Masahiko
Physics Division Faculty Of Science Kochi University
-
Kuriyama Atushi
Faculty Of Engineering Kansai University
-
TSUE Yasuhiko
Center for Computational Physics, Departamento de Fisica, Universidade de Coimbra
-
YAMAMURA Masatoshi
Faculty of Engineering,Kansai University
-
PROVIDENCIA Joao
Departamento de Fisica, Universidade de Coimbra
-
Joao da
Departamento de Fisica, Universidade de Coimbra
-
PROVIDENCIA Joao
Departamento de Fisica, Universidade da Beira Interior
-
Kuriyuama Atsushi
Faculty of Engineering, Kansai University
-
AKAIKE Hideaki
Physics Division, Faculty of Science, Kochi University
-
TSUE Yasuhiko
Department of Material Science, Kochi University
-
TSUE Yasuhiko
Center for Computational Physics, Departamento de Fisica, Universidade de Coimbra:Physics Division, Faculty of Science, Kochi University
-
TSUE Yasuhiko
Department of Physics, Kochi University
-
TSUE Yasuhiko
Department of Physics,Kochi University
-
TSUE Yasuhiko
Physics Division, Faculty of Science, Koch University
-
Constanca PROVIDENCIA
Departamento de Fisica, Universidade de Coimbra
著作論文
- First-Order Quark-Hadron Phase-Transition in a NJL-Type Model for Nuclear and Quark Matter : The Case of Symmetric Nuclear Matter(Nuclear Physics)
- Approach to a Fermionic SO(2N+2) Rotator Based on the SO(2N+1) Lie Algebra of the Fermion Operators (arXiv:1010.1642v1)
- The Lipkin Model in Many-Fermion System as an Example of the su(1, 1) ⊗ su(1, 1)-Algebraic Model(Nuclear Physics)
- Note on Many-Quark Model with su(4) Algebraic Structure(Nuclear Physics)
- On the Exact Eigenstates and the Ground States Based on the Boson Realization for Many-Quark Model with su(4) Algebraic Structure(Nuclear Physics)
- Many-Quark Model with su(4) Algebraic Structure : An Example of Analytically Soluble Many-Fermion System(Nuclear Physics)
- Semi-Classical Approach to the Two-Level Pairing Model : Various Aspects of Phase Change(Nuclear Physics)
- The Heisenberg Antiferromagnet : An Explicitly Rotational Invariant Formulation(Condensed Matter and Statistical Physics)
- An Orthogonal Set Constituted by Eight Kinds of Boson Operators
- A Note on a Boson Realization in Many-Boson System
- On the Coupling of Two su(1, 1)Spins in the Holstein-Primakoff Type Boson Representation
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. III : Parameter-Dependent Deformation
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. II : Unified Forms of Boson-Pair Coherent States in Even- and Odd-Boson Systems(Nuclear Physics)
- Imperfect Bose System and Its Mixed State Representation. II : Numerical Analysis with a Short-Range Replusive Force(Nuclear Physics)
- Deformed Boson Scheme Stressing Even-Odd Boson Number Difference. I : Various Forms of Boson-Pair Coherent State(Nuclear Physics)
- Note on the Orthogonal Set in Six Kinds of Boson Operators : In Relation to the su(1,1)- and Its Relevant Algebras
- A Possible Form of the Orthogonal Set in Six Kinds of Boson Operators : In Relation to the su(2)- and Its Relevant Algebras
- On the Boson Number Operator in the Deformed Boson Scheme
- The su(1,1)-Algebraic Boson Model in the Deformed Boson Scheme : The Second Holstein-Primakoff Representation as q-Deformed Boson Operator(Nuclear Physics)
- Note on the Deformed Boson Scheme in Four Kinds of Boson Operators
- Two Contrastive Boson-Pair Coherent States in Deformed Boson Scheme
- On the Multiboson Coherent State in Deformed Boson Scheme
- Deformed Boson Scheme including Conventional q-Deformation in Time-Dependent Variational Method. III : Deformation of the su(2,1)-Algebra in Terms of Three Kinds of Boson Operators
- Utility of su(1,1)-Algebra in a Schematic Nuclear su(2)-Model
- On the Color-Singlet States in Many-Quark Model with the su(4)-Algebraic Structure. III : Transition from the Quark-Triplet to the Quark-Pair Phase(Nuclear Physics)
- On the Color-Singlet States in Many-Quark Model with the su(4)-Algebraic Structure. II : Determination of Ground-State Energies(Nuclear Physics)
- On the Color-Singlet States in Many-Quark Model with the su(4)-Algebraic Structure. I : Color-Symmetric Form(Nuclear Physics)
- Pairing Model and Mixed State Representation. II : Grand Partition Function and Its Mean Field Approximation
- Canonical Formulation of Mixed State and Irreducible Representation of u(M) Algebra
- Time-Evolution of the Cohererut and the Squeezed States of Many-Body Systems Based on the Basic Idea of the Boson Mapping and the TDHF Method
- Imperfect Bose System and Its Mixed State Representation. I : Thermal Equilibrium State of Imperfect Bose System
- The Lipkin Model in a New Boson Realization : Basic Idea
- Description of Mixed States Based on the Time-Dependent Hartree-Fock Theory. II : Classical Boson Expansion : Nuclear Physics
- Description of Mixed States Based on the Time-Dependent Hartree-Fock Theory. I : Formalism of Thermo Field Dynamics in Canonical Theory with Constraints : Nuclear Physics
- Note on the Minimum Weight States in the su(2)-Algebraic Many-Fermion Model : Extension of the Role of the Auxiliary su(2)-Algebra(Nuclear Physics)
- Color-Singlet Three-Quark States in the su(4)-Algebraic Many-Quark Model : An Example of the su(4) ⨂ su(4)-Model(Nuclear Physics)
- Re-Formation of Many-Quark Model with the su(4)-Algebraic Structure in the Schwinger Boson Realization : Reconsideration in the Original Fermion Space(Nuclear Physics)
- Modification of the Conventional Holstein-Primakoff Boson Representation for the su(1,1)-Algebra and Its Classical Counterpart
- Thermal Effect in Lipkin Model. II : Grand Partition Function and Mean Field Approximation
- Thermal Effect in Lipkin Model. I : Thermal Equilibrium State and Phase Transition : Nuclear Physics
- Effective Potential Approach to Quark Ferromagnetization in High Density Quark Matter(Nuclear Physics)
- The BCS-Bogoliubov and the su(2)-Algebraic Approach to the Pairing Model in Many-Fermion System : The Quasiparticle in the Conservation of the Fermion Number(Nuclear Physics)
- A Role of the Quasiparticle in the Conservation of the Fermion Number : An Example Illustrative of the Deformation of the Cooper Pair(Nuclear Physics)
- A Possible Description of Many-Body System Composed of Three Kinds of Boson Operators : The su(2,1)-Boson Model : Neuclear Physics
- A Note on the Eigenvalue Problem in the su(1, 1)-Algebra(Nuclear Physics)
- A Possible Boson Realization of the so(4)-and the so(3, 1)-Algebra : In Relation to the Runge-Lenz-Pauli Vector(Nuclear Physics)