Behavior of Coated Fuel Particle of High-Temperature Gas-Cooled Reactor under Reactivity-Initiated Accident Conditions
スポンサーリンク
概要
- 論文の詳細を見る
In order to clarify the failure mechanism and determine the failure limit of the High-Temperature Gas-cooled Reactor (HTGR) fuel under reactivity-initiated accident (RIA) conditions, pulse irradiations were performed with unirradiated coated fuel particles at the Nuclear Safety Research Reactor (NSRR). The energy deposition ranged from 0.578 to 1.869 kJ/gUO2 in the pulse irradiations and the estimated peak temperature at the center of the fuel particle ranged from 1,510 to 3,950 K. Detailed examinations after the pulse irradiations showed that the coated fuel particles failed above 1.40 kJ/gUO2, where the peak fuel temperature reached over the melting point of UO2 fuel. It was concluded that the coated fuel particle was failed by the mechanical interaction between the melted and swelled fuel kernel and the coating layer under RIA conditions.
- 社団法人 日本原子力学会の論文
- 2010-11-01
著者
-
NAGASE Fumihisa
Japan Atomic Energy Agency
-
SUGIYAMA Tomoyuki
Japan Atomic Energy Agency
-
FUKETA Toyoshi
Japan Atomic Energy Agency
-
SAWA Kazuhiro
Japan Atomic Energy Agency
-
Fuketa T
Japan Atomic Energy Agency
-
UMEDA Miki
Japan Atomic Energy Agency
-
UETA Shohei
Japan Atomic Energy Agency
-
NAGASE Fumihisa
Nuclear Safety Research Center, Japan Atomic Energy Agency
-
Sugiyama T
Japan Atomic Energy Agency
-
Nagase Fumihisa
Nuclear Safety Research Center Japan Atomic Energy Agency
関連論文
- Identification of Radial Position of Fission Gas Release in High-Burnup Fuel Pellets under RIA Conditions
- Stress Intensity Factor at the Tip of Cladding Incipient Crack in RIA-Simulating Experiments for High-Burnup PWR Fuels
- Optimized Ring Tensile Test Method and Hydrogen Effect on Mechanical Properties of Zircaloy Cladding in Hoop Direction
- Behavior of High Burn-up Fuel Cladding under LOCA Conditions
- Thermal Conductivity Change in High Burnup MOX Fuel Pellet
- Evaluation of Initial Temperature Effect on Transient Fuel Behavior under Simulated Reactivity-Initiated Accident Conditions
- Interpolation and Extrapolation Method to Analyze Irradiation-Induced Dimensional Change Data of Graphite for Design of Core Components in Very High Temperature Reactor (VHTR)
- Investigation of Microstructural Change by X-ray Tomography and Anisotropic Effect on Thermal Property of Thermally Oxidized 2D-C/C Composite for Very High Temperature Reactor
- Development of an Evaluation Model for the Thermal Annealing Effect on Thermal Conductivity of IG-110 Graphite for High-Temperature Gas-Cooled Reactors
- Clad-to-Coolant Heat Transfer in NSRR Experiments
- Radionuclide Release from Mixed-Oxide Fuel under High Temperature at Elevated Pressure and Influence on Source Terms
- Proposal of Simplified Model of Radionuclide Release from Fuel under Severe Accident Conditions Considering Pressure Effect
- Effects of Fuel Oxidation and Dissolution on Volatile Fission Product Release under Severe Accident Conditions
- Releases of Cesium and Poorly Volatile Elements from UO_2 and MOX Fuels under Severe Accident Conditions
- Fracture Behavior of Irradiated Zircaloy-4 Cladding under Simulated LOCA Conditions
- Behavior of Coated Fuel Particle of High-Temperature Gas-Cooled Reactor under Reactivity-Initiated Accident Conditions
- Application of Proton-conducting Ceramics and Polymer Permeable Membranes for Gaseous Tritium Recovery
- Preliminary Test Results for Post Irradiation Examination on the HTTR Fuel
- Fission Gas Release in BWR Fuel with a Burnup of 56GWd/t during Simulated Reactivity Initiated Accident (RIA) Condition
- Measurements of Crystal Lattice Strain and Crystallite Size in Irradiated UO_2 Pellet by X-ray Diffractometry
- Behavior of 60 to 78MWd/kgU PWR Fuels under Reactivity-Initiated Accident Conditions
- Fission Gas Release in Irradiated UO_2 Fuel at Burnup of 45GWd/t during Simulated Reactivity Initiated Accident (RIA) Condition
- Failure Thresholds of High Burnup BWR Fuel Rods under RIA Conditions
- Behavior of Irradiated ATR/MOX Fuel under Reactivity Initiated Accident Conditions
- Fission Gas Release Behavior of High Burnup UO_2 Fuel under Reactivity Initiated Accident Conditions
- Fission Gas Induced Cladding Deformation of LWR Fuel Rods under Reactivity Initiated Accident Conditions
- Hydrogen Generation during Cladding/Coolant Interactions under Reactivity Initiated Accident Conditions
- Behavior of Pre-hydrided Zircaloy-4 Cladding under Simulated LOCA Conditions
- Thermal Stress Analysis of High-Burnup LWR Fuel Pellet Pulse-Irradiated in Reactivity-Initiated Accident Conditions
- Analysis of MOX Fuel Behavior in Halden Reactor by FEMAXI-6 Code
- Investigation of Hydride Rim Effect on Failure of Zircaloy-4 Cladding with Tube Burst Test
- Influence of Hydride Re-orientation on BWR Cladding Rupture under Accidental Conditions
- Influence of Cladding-Peripheral Hydride on Mechanical Fuel Failure under Reactivity-Initiated Accident Conditions
- Effect of Cladding Surface Pre-oxidation on Rod Coolability under Reactivity Initiated Accident Conditions
- RANNS Code Analysis on the Local Mechanical Conditions of Cladding of High Burnup Fuel Rods under PCMI in RIA-Simulated Experiments in NSRR
- Effect of Pre-Hydriding on Thermal Shock Resistance of Zircaloy-4 Cladding under Simulated Loss-of-Coolant Accident Conditions
- Effect of Cooling History on Cladding Ductility under LOCA Conditions
- Oxidation kinetics of Low-Sn Zircaloy-4 at the Temperature Range from 773 to 1, 573 K
- B_4C/Zircaloy Reaction at Temperatures from 1, 173 to 1, 953 K
- Ring Compression Ductility of High-Burnup Fuel Cladding after Exposure to Simulated LOCA Conditions
- ICONE11-36070 ADVANCED COATED PARTICLE FUELS : EXPERIENCE OF ZRC-TRISO FUEL DEVELOPMENT AND BEYOND
- Ring Compression Ductility of High-Burnup Fuel Cladding after Exposure to Simulated LOCA Conditions
- Oxidation kinetics of Low-Sn Zircaloy-4 at the Temperature Range from 773 to 1, 573 K
- Influence of Hydride Re-orientation on BWR Cladding Rupture under Accidental Conditions