Optimized Ring Tensile Test Method and Hydrogen Effect on Mechanical Properties of Zircaloy Cladding in Hoop Direction
スポンサーリンク
概要
- 論文の詳細を見る
Data pertaining to the mechanical properties of the fuel cladding in the hoop direction are required for the analysis of high burn-up fuel behavior under reactivity-initiated accident (RIA) conditions. In the present study, by minimizing undesirable effects of friction and bending, the ring tensile test method was optimized to obtain precise data pertaining to the mechanical properties of the fuel cladding in the hoop direction. The optimized specimen has a single gauge section and is stretched using the tooling consisting of two half-mandrels. The gauge section is set on top of a half-mandrel; this arrangement is unique in comparison with other methods. Using the optimized test method, the mechanical properties of the prehydrided Zircaloy-4 cladding in the hoop direction were evaluated as functions of hydrogen concentration and test temperature. When the hydrogen concentration is below 500 ppm, the decrease in ductility due to hydriding is relatively small at all test temperatures. When the hydrogen concentration is above 600 ppm, the ductility in the tests at 300 K remarkably decreases due to hydriding, while the hydrogen effect decreases in magnitude in the tests above 473 K.
- 2009-06-01
著者
-
NAGASE Fumihisa
Japan Atomic Energy Agency
-
SUGIYAMA Tomoyuki
Japan Atomic Energy Agency
-
FUKETA Toyoshi
Japan Atomic Energy Agency
-
Fuketa T
Japan Atomic Energy Agency
-
NAGASE Fumihisa
Nuclear Safety Research Center, Japan Atomic Energy Agency
-
Sugiyama T
Japan Atomic Energy Agency
-
Nagase Fumihisa
Nuclear Safety Research Center Japan Atomic Energy Agency
関連論文
- Identification of Radial Position of Fission Gas Release in High-Burnup Fuel Pellets under RIA Conditions
- Stress Intensity Factor at the Tip of Cladding Incipient Crack in RIA-Simulating Experiments for High-Burnup PWR Fuels
- Optimized Ring Tensile Test Method and Hydrogen Effect on Mechanical Properties of Zircaloy Cladding in Hoop Direction
- Behavior of High Burn-up Fuel Cladding under LOCA Conditions
- Thermal Conductivity Change in High Burnup MOX Fuel Pellet
- Evaluation of Initial Temperature Effect on Transient Fuel Behavior under Simulated Reactivity-Initiated Accident Conditions
- Clad-to-Coolant Heat Transfer in NSRR Experiments
- Radionuclide Release from Mixed-Oxide Fuel under High Temperature at Elevated Pressure and Influence on Source Terms
- Proposal of Simplified Model of Radionuclide Release from Fuel under Severe Accident Conditions Considering Pressure Effect
- Effects of Fuel Oxidation and Dissolution on Volatile Fission Product Release under Severe Accident Conditions
- Releases of Cesium and Poorly Volatile Elements from UO_2 and MOX Fuels under Severe Accident Conditions
- Fracture Behavior of Irradiated Zircaloy-4 Cladding under Simulated LOCA Conditions
- Behavior of Coated Fuel Particle of High-Temperature Gas-Cooled Reactor under Reactivity-Initiated Accident Conditions
- Application of Proton-conducting Ceramics and Polymer Permeable Membranes for Gaseous Tritium Recovery
- Fission Gas Release in BWR Fuel with a Burnup of 56GWd/t during Simulated Reactivity Initiated Accident (RIA) Condition
- Measurements of Crystal Lattice Strain and Crystallite Size in Irradiated UO_2 Pellet by X-ray Diffractometry
- Behavior of 60 to 78MWd/kgU PWR Fuels under Reactivity-Initiated Accident Conditions
- Fission Gas Release in Irradiated UO_2 Fuel at Burnup of 45GWd/t during Simulated Reactivity Initiated Accident (RIA) Condition
- Failure Thresholds of High Burnup BWR Fuel Rods under RIA Conditions
- Behavior of Irradiated ATR/MOX Fuel under Reactivity Initiated Accident Conditions
- Fission Gas Release Behavior of High Burnup UO_2 Fuel under Reactivity Initiated Accident Conditions
- Fission Gas Induced Cladding Deformation of LWR Fuel Rods under Reactivity Initiated Accident Conditions
- Hydrogen Generation during Cladding/Coolant Interactions under Reactivity Initiated Accident Conditions
- Behavior of Pre-hydrided Zircaloy-4 Cladding under Simulated LOCA Conditions
- Thermal Stress Analysis of High-Burnup LWR Fuel Pellet Pulse-Irradiated in Reactivity-Initiated Accident Conditions
- Analysis of MOX Fuel Behavior in Halden Reactor by FEMAXI-6 Code
- Investigation of Hydride Rim Effect on Failure of Zircaloy-4 Cladding with Tube Burst Test
- Influence of Hydride Re-orientation on BWR Cladding Rupture under Accidental Conditions
- Influence of Cladding-Peripheral Hydride on Mechanical Fuel Failure under Reactivity-Initiated Accident Conditions
- Effect of Cladding Surface Pre-oxidation on Rod Coolability under Reactivity Initiated Accident Conditions
- RANNS Code Analysis on the Local Mechanical Conditions of Cladding of High Burnup Fuel Rods under PCMI in RIA-Simulated Experiments in NSRR
- Effect of Pre-Hydriding on Thermal Shock Resistance of Zircaloy-4 Cladding under Simulated Loss-of-Coolant Accident Conditions
- Effect of Cooling History on Cladding Ductility under LOCA Conditions
- Oxidation kinetics of Low-Sn Zircaloy-4 at the Temperature Range from 773 to 1, 573 K
- B_4C/Zircaloy Reaction at Temperatures from 1, 173 to 1, 953 K
- Ring Compression Ductility of High-Burnup Fuel Cladding after Exposure to Simulated LOCA Conditions
- Ring Compression Ductility of High-Burnup Fuel Cladding after Exposure to Simulated LOCA Conditions
- Oxidation kinetics of Low-Sn Zircaloy-4 at the Temperature Range from 773 to 1, 573 K
- Influence of Hydride Re-orientation on BWR Cladding Rupture under Accidental Conditions