大規模自然言語処理学習データのための複数弱仮説を生成する弱学習器を用いる AdaBoost 手法
スポンサーリンク
概要
- 論文の詳細を見る
AdaBoost is a method to create a final hypothesis by repeatedly generating a weak hypothesis in each training iteration with a given weak learner. AdaBoost-based algorithms are successfully applied to several tasks such as Natural Language Processing (NLP), OCR, and so on. However, learning on the training data consisting of large number of samples and features requires long training time. We propose a fast AdaBoost-based algorithm for learning rules represented by combination of features. Our algorithm constructs a final hypothesis by learning several weak-hypotheses at each iteration. We assign a confidence-rated value to each weak-hypothesis while ensuring a reduction in the theoretical upper bound of the training error of AdaBoost. We evaluate our methods with English POS tagging and text chunking. The experimental results show that the training speed of our algorithm are about 25 times faster than an AdaBoost-based learner, and about 50 times faster than Support Vector Machines with polynomial kernel on the average while maintaining state-of-the-art accuracy.
- 2010-01-01
著者
関連論文
- 大規模自然言語処理学習データのための複数弱仮説を生成する弱学習器を用いる AdaBoost 手法
- 数値属性からの例外ルール発見
- 平均的解析の拡張
- 5J-1 最小近傍法の平均的挙動の解明
- 意外性の高いルールの発見のための高速なアルゴリズム
- 重複概念の獲得が可能なクラスタリングアルゴリズムについて
- 訓練事例をガイドとする分類規則の学習
- 近傍に基づく類似事例検索の理論的解析
- 重複概念の獲得が可能なクラスタリングの一提案
- クラスタリングを用いたベイズ分類器の拡張
- K-最小近傍法におけるノイズの影響
- 企業内情報検索の高度化手法の提案と評価
- 第15回人工知能国際会議報告
- Boostingに基づく規則学習における部分候補を用いた高速化手法
- ラベルなしデータを用いた素性増強による日本語固有表現抽出方法
- Stackingの効率的な学習方法と日本語固有表現抽出での評価(抽出(1))
- Stackingの効率的な学習方法と日本語固有表現抽出での評価(抽出(1))
- カスタマーセンター支援システム
- リアルタイムSFAソリューション (特集 ユビキタス) -- (ユビキタスを支える技術)
- 信頼性(7)類似事例検索によるトラブル解決支援システム
- 事例の相対距離による類似度学習とその検索誤り率について
- ノイズを考慮した最小近傍法の理論的解析
- 距離情報による類似度関数の重み学習
- Boostingに基づく系列ラベリングにおける効率的規則表現方法による高速化
- 大規模空間データからの最適領域集合の効率的な発見方法
- 新時代への展望 ソフトウェア技術者の視点から
- ニューロコンピュータとロボットへの応用(人間をまねる : ヒューマンミメティック最前線)
- 類似事例検索システム : 通信ソフト故障診断問題への適用
- k-最小近傍法の平均的解析
- 最近隣法の正答率に対する理論的解析
- 重み付き最近隣法における重み学習について
- 定性的距離を用いた類似度関数の重み付けの学習
- 3.大規模半構造データからの高速な知識発見システム : 効率良い木構造バターンの発見と照合(広がる列挙の技術-列挙による問題解決アプローチ-)
- 大規模半構造データからの高速な知識発見システム : 効率良い木構造パターンの発見と照合