Physiology and Pathophysiology of Proteinase-Activated Receptors (PARs) : PARs in the Respiratory System : Cellular Signaling and Physiological/Pathological Roles
スポンサーリンク
概要
- 論文の詳細を見る
Proteinase-activated receptors (PARs), a family of G protein-coupled receptors, are widely distributed in the mammalian body, playing a variety of physiological/pathophysiological roles. In the respiratory systems, PARs, particularly PAR-2 and PAR-1, are expressed in the epithelial and smooth muscle cells. In addition to the Gq/11-mediated activation of the phospholipase Cβ pathway, epithelial PAR activation causes prompt and/or delayed prostanoid formation, leading to airway smooth muscle relaxation and/or modulation of an inflammatory process. PAR-2 present in the epithelium and smooth muscle is considered primarily pro-inflammatory in the respiratory system, although PAR-2 may also be anti-inflammatory under certain conditions. In the lung epithelial cells, PAR-2 can also be activated by exogenous proteinases including house dust mite allergens, in addition to various possible endogenous agonist proteinases. Clinical evidence also suggests possible involvement of PARs, particularly PAR-2, in respiratory diseases. PARs thus appear to play critical roles in the respiratory systems, and the agonists/antagonists for PARs may serve as the novel therapeutic strategy for treatment of certain respiratory diseases including asthma.
- 社団法人 日本薬理学会の論文
- 2005-01-20
著者
-
Kawabata Atsufumi
Division Of Pharmacology And Pathophysiology Kinki University School Of Pharmacy
-
Kawabata Atsufumi
Division Of Physiology & Pathophysiology School Of Pharmaceutical Sciences Kinki University
-
Kawao Naoyuki
Division Of Physiology & Pathophysiology School Of Pharmaceutical Sciences Kinki University
-
Kawabata Atsufumi
Division of Pharmacology & Pathophysiology, Kinki University School of Pharmacy, Japan
関連論文
- Physiology and Pathophysiology of Proteinase-Activated Receptors (PARs) : PAR-2 as a Potential Therapeutic Target
- Modulation of Capsaicin-Evoked Visceral Pain and Referred Hyperalgesia by Protease-Activated Receptors 1 and 2
- Proteinase-Activated Receptor-2-Triggered Prostaglandin E_2 Release, but Not Cyclooxygenase-2 Upregulation, Requires Activation of the Phosphatidylinositol 3-Kinase / Akt / Nuclear Factor-κB Pathway in Human Alveolar Epithelial Cells
- Basic and Translational Research on Proteinase-Activated Receptors: Preface
- Hydrogen Sulfide Causes Relaxation in Mouse Bronchial Smooth Muscle
- Curcumin Inhibits the Proteinase-Activated Receptor-2–Triggered Prostaglandin E2 Production by Suppressing Cyclooxygenase-2 Upregulation and Akt-Dependent Activation of Nuclear Factor-κB in Human Lung Epithelial Cells
- Prostaglandin E2 and Pain—An Update
- Physiology and Pathophysiology of Proteinase-Activated Receptors (PARs) : PARs in the Respiratory System : Cellular Signaling and Physiological/Pathological Roles
- Curcumin Inhibits the Proteinase-Activated Receptor-2-Triggered Prostaglandin E_2 Production by Suppressing Cyclooxygenase-2 Upregulation and Akt-Dependent Activation of Nuclear Factor-κB in Human Lung Epithelial Cells
- Impact of a Pharmacist-Implemented Anemia Management in Outpatients with End-Stage Renal Disease in Japan(Biopharmacy)
- Colonic Hydrogen Sulfide-Induced Visceral Pain and Referred Hyperalgesia Involve Activation of Both Ca_v3.2 and TRPA1 Channels in Mice
- Colonic Hydrogen Sulfide–Induced Visceral Pain and Referred Hyperalgesia Involve Activation of Both Cav3.2 and TRPA1 Channels in Mice
- Antihyperalgesic Effect of Buprenorphine Involves Nociceptin/Orphanin FQ Peptide–Receptor Activation in Rats With Spinal Nerve Injury–Induced Neuropathy