方策こう配法を用いた行動学習 : 環境のダイナミクスと行動知識との分離
スポンサーリンク
概要
- 論文の詳細を見る
Policy gradient methods are useful approaches to reinforcement learning. Applying the method to behavior learning, we can deal with each decision problem in different time-steps as a problem of minimizing an objective function. In this paper, we give the objective function consists of two types of parameters, which represent state-values and environmental dynamics. In order to separate the learning of the state-value from that of the environmental dynamics, we also give respective learning rules for each type of parameters. Furthermore, we show that the same set of state-values can be reused under different environmental dynamics.
- 2009-09-01
著者
関連論文
- 非マルコフ決定過程における強化学習 : 特徴的適正度の統計的性質(モデル/理論,ソフトウェアエージェントとその応用論文)
- 非マルコフ決定過程における方策勾配法の一考察 : カーリングの事例
- Ridgelet-Hough変換を用いた足跡画像符号化に関する考察 : 符号化方法の提案および従来法との特徴比較(プロセッサ, DSP, 画像処理技術及び一般)
- Ridgelet-Hough変換を用いた足跡画像符号化に関する考察--符号化方法の提案および従来法との特徴比較
- 1D-6 方策勾配法を用いたサッカーエージェントの学習 : パス・レシーブ(ゲーム・ロボカップ,一般セッション,人工知能と認知科学)
- 2P1-S-022 方策勾配法を用いたフリーキック時の行動学習(ロボカップ2,生活を支援するロボメカ技術のメガインテグレーション)
- Ridgelet-Hough変換を用いた足跡画像符号化に関する考察 : 符号化方法の提案および従来法との特徴比較(プロセッサ, DSP, 画像処理技術及び一般)
- Ridgelet-Hough変換を用いた足跡画像符号化に関する考察 : 符号化方法の提案および従来法との特徴比較(プロセッサ, DSP, 画像処理技術及び一般)
- 1A1-N-028 方策勾配法を用いた運動方程式中のパラメータ学習 : 2ストーン系のカーリングゲーム(マルチエージェントロボットシステム,生活を支援するロボメカ技術のメガインテグレーション)
- Ridgelet-Hough変換を用いた足跡画像符号化に関する考察 : 符号化方法の提案および従来法との特徴比較(プロセッサ, DSP, 画像処理技術及び一般)
- 離散最適化問題としての自律移動型ロボットの走行誘導
- 方策こう配法を用いた行動学習 : 環境のダイナミクスと行動知識との分離
- マルチエージェント系における行動学習への方策こう配法の適用 : 追跡問題(分散協調とエージェント)
- マルチエージェント系における方策勾配法 : 追跡問題
- マルチエージェント系における方策勾配法 : 追跡問題
- 強化学習を用いた自律移動型ロボットの行動計画法の提案
- 方策勾配法における目的関数の合成と追跡問題への適用 (テーマ:知能・適応と社会,ネットワーク) -- (マルチエージェントシステム)
- F_004 方策こう配法を用いた行動学習 : 方策中での状態遷移確率の表現(F分野:人工知能・ゲーム)
- 入力パターンベクトルの分布に基づくクラス分類問題の分割法
- 方策勾配法を用いた自律移動型ロボットの行動計画法
- ノードコストを考慮した最短経路探索法とデータ構造
- ノードコストを考慮した最短経路探索法とデータ構造
- 離散最適化問題としての自律移動型ロボットの経路計画
- 状態の複数の抽象化による方策こう配法の高速化--トンネル状の障害物が存在する追跡問題への適用
- 状態の複数の抽象化による方策こう配法の高速化 : トンネル状の障害物が存在する追跡問題への適用(情報ネットワーク)
- 動径基底関数を用いたクラス分類問題の分割法 : モジュール型ニューラルネットワークへの適用
- マルチエージェントシステムにおける行動制御 : PSOにおける重み係数の強化学習(情報ネットワーク)
- ファジィ制御ルールにより表現された方策を持つ方策勾配法の導出
- 方策勾配法による局面評価関数とシミュレーション方策の学習
- D-8-4 ファジィ制御ルールにより表現された方策を持つ方策勾配法の適用事例:RoboCup小型リーグ(D-8.人工知能と知識処理)
- D-8-3 RoboCupサッカーシミュレーションリーグ2Dにおけるリターンパス:chain_action上の状態予測(D-8.人工知能と知識処理)