Very Low Interface State Density From Thermally Oxidized Single-Domain 3C–SiC/6H–SiC Grown by Vapour–Liquid–Solid Mechanism
スポンサーリンク
概要
- 論文の詳細を見る
The temperature- and frequency-dependent electrical properties of SiO2/3C–SiC/6H–SiC structures have been studied. Capacitance measurements indicate that the single-domain 3C–SiC film is doped with an average concentration of $8.4\times 10^{16}$ cm-3. One nitrogen donor level and a shallow donor level were found. The measured interface state density near the conduction band edge of 3C–SiC is below $10^{11}$ cm-2 eV-1 and increases towards mid-gap as obtained from conductance and capacitance measurements. Our results are consistent with the assumption that the interfaces of SiO2/n-type SiC consist of two different kinds of interface traps.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2006-09-15
著者
-
PENSL Gerhard
Institute of Applied Physics, University of Erlangen-Nurnberg
-
Lee Kin
Institute Of Applied Physics University Of Erlangen-nurnberg
-
Pensl Gerhard
Institute Of Applied Physics University Of Erlangen-nurnberg
-
Soueidan Maher
Laboratoire des Multimateriaux et Interfaces, UMR-CNRS 5615, UCB-Lyon 1, 43 Bd du 11 nov. 1918, 6962
-
Ferro Gabriel
Laboratoire des Multimateriaux et Interfaces, UMR-CNRS 5615, UCB-Lyon 1, 43 Bd du 11 nov. 1918, 6962
-
Monteil Yves
Laboratoire des Multimateriaux et Interfaces, UMR-CNRS 5615, UCB-Lyon 1, 43 Bd du 11 nov. 1918, 6962
-
Monteil Yves
Laboratoire Des Multimateriaux Et Interfaces Umr-cnrs 5615 Ucb-lyon 1
-
Ferro Gabriel
Laboratoire Des Multimateriaux Et Interfaces Umr-cnrs 5615 Ucb-lyon 1
-
Soueidan Maher
Laboratoire Des Multimateriaux Et Interfaces Umr-cnrs 5615 Ucb-lyon 1
関連論文
- Anomalous Increase in Effective Channel Mobility on Gamma-Irradiated p-Channel SiC Metal-Oxide-Semiconductor Field-Effect Transistors Containing Step Bunching
- Very Low Interface State Density From Thermally Oxidized Single-Domain 3C–SiC/6H–SiC Grown by Vapour–Liquid–Solid Mechanism
- Abnormal Out-Diffusion of Epitaxially Doped Boron in 4H–SiC Caused by Implantation and Annealing