Exergy Analysis of Charcoal Charging Operation of Blast Furnace
スポンサーリンク
概要
- 論文の詳細を見る
Effective use of biomass resource is expected to be one of the solutions to the environmental problems, since a sort of biomass absorbs carbon dioxide through photosynthesis reaction. One of the possibilities to utilize such biomass resources is the replacement of coal and/or coke with charcoal. With nature of charcoal it is known that the hot metal quality can be improved as well as abatement of environmental impact through less slag generation and virtually no CO2 and SO2 emissions. This paper performed an exergy analysis on charcoal charged blast furnace. As a result, it is revealed that the charcoal system needs more enthalpy and exergy inputs than conventional ironmaking system while it produces more energy available in the other processes. This keeps exergy loss in charcoal system in the comparable level with the conventional system. The analysis shows that each process included in the system still has a possibility to be improved. Thus the performance of the charcoal system is expected to be equivalent to or even better than the conventional system. Therefore ironmaking system with charcoal charged blast furnace is expected to be a key technology to contribute environmental issues.
- 社団法人 日本鉄鋼協会の論文
- 2004-10-15
著者
-
Nogami Hiroshi
Institute Of Multidisciplinary Research For Advanced Materials Tohoku University
-
YAGI Jun-ichiro
Institute for Advanced Materials Processing, Tohoku University
-
Nogami Hiroshi
Institute For Advanced Materials Processing Tohoku University
-
Yagi Jun-ichiro
Institute Of Multidisciplinary Research For Advanced Materials Tohoku University
-
Yagi Jun-ichiro
Institute For Advanced Materials Processing Tohoku University
-
Sampaio Ronaldo
Rs Consultants
-
Yagi Jun-ichiro
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
関連論文
- Operating Conditions for Hydriding Combustion Synthesis of Pure Mg_2NiH_4
- Effects of Hydrogen Pressure and Cooling Rate on the Hydriding Combustion Synthesis of Mg_2NiH_4 Studied by Thermogravimetry and X-ray Diffraction
- Cold-model Experiments on Deadman Renewal Rate Due to Sink-Float Motion of Hearth Coke Bed
- Numerical Analysis of Static Holdup of Fine Particles in Blast Furnace
- Numerical Analysis on Blast Furnace Performance under Operation with Top Gas Recycling and Carbon Composite Agglomerates Charging
- Numerical Analysis on Blast Furnace Performance under Operation with Waste Plastics Injection and Top Gas Recycling
- Numerical Analysis on Injection of Hydrogen Bearing Materials into Blast Furnace
- Numerical Analysis on Charging Carbon Composite Agglomerates into Blast Furnace
- Numerical Analysis on Top Gas Recycling in Blast Furnace with Carbon Composite Agglomerates Charging
- Numerical Evaluation on Blast Furnace Performance under Operation with Carbon Composite Agglomerates Charging
- Numerical Analysis on Effects of Charging Carbon Composite Agglomerates on Blast Furnace Operation
- Mathematical Model of Over-micron and Nano-scale Powders Accumulation in a Coke Fixed-Bed Filter
- Numerical Simulation of the Moving Bed Furnace for Iron Scrap Melting
- Numerical Simulation of the Moving Bed Furnace for Iron Scrap Melting
- Three-dimensional Multiphase Mathematical Modeling of the Blast Furnace Based on the Multifluid Model
- Numerical Analysis of Multiple Injection of Pulverized Coal, Prereduced Iron Ore and Flux with Oxygen Enrichment to the Blast Furnace
- Transient Mathematical Model of Blast Furnace Based on Multi-fluid Concept, with Application to High PCI Operation
- Numerical study on natural gas injection to the blast furnace
- Transient Mathematical modeling of Blast Furnace based on multi-fluid concept
- Recovery of Magnetite from Leached Laterite-residue by Magnetic Separation
- Recovery of Nickel from Selectively Reduced Laterite Ore by Sulphuric Acid Leaching
- Lowering of Grinding Energy and Enhancement of Agglomerate Strength by Dehydration of Indonesian Laterite Ore
- Reduction rate of cement bonded laterite briquette with CO-CO_2 gas
- Advanced Processing of Laterite Ore as Raw Material for Ironmaking -Reduction rate of cement-bonded laterite briquette with CO-CO_2 gas-
- Advanced Agglomeration of Laterite Iron Ore Including Combined Water
- Validation of a Blast Furnace Solid Flow Model Using Reliable 3-D Experimental Results
- Sophisticated Multi-phase Multi-flow Modeling of the Blast Furnace
- Thermodynamic Analysis of Thermochemical Recovery of High Temperature Wastes
- Analysis of transient blast furnace behavior by using a 3-D mathematical model
- Three-dimensional blast furnace mathematical modeling based on multi-fluid theory
- SiO_2 Etching Using M=0 Helicon Wave Plasma
- Numerical Investigation on Effects of Deadman Structure and Powder Properties on Gas and Powder Flows in Lower Part of Blast Furnace
- Computational Investigation of Scrap Charging to the Blast Furnace
- Analysis of Actual Blast Furnace Operations and Evaluation of Static Liquid Holdup Effects by the Four Fluid Model
- Prediction of Blast Furnace Performance with Top Gas Recycling
- A Mathematical Model for Blast Furnace Reaction Analysis Based on the Four Fluid Model
- A Mathematical Model of Four Phase Motion and Heat Transfer in the Blast Furnace
- Blast Furnace Ironmaking System Using Partially Reduced Iron Ore Reduced by an Energy Source with Low Carbon Content
- Prediction of Generation Rates in "Reactive Arc Plasma" Ultrafine Powder Production Process
- Numerical Analysis of the Flow Characteristics and Temperature Distribution in Metal Beads Subjected to Transferred Arc Plasma Impingement
- Prediction of Surface Temperature on Metal Beads Subjected to Argon-Hydrogen Transferred Arc Plasma Impingement
- Modeling of the Flow, Temperature and Concentration Fields in an Arc Plasma Reactor with Argon-Nitrogen Atmosphere
- NUMERICAL SIMULATION OF FLOW AND TEMPERATURE DISTRIBUTION IN A TRANSFERRED ARGON ARC PLASMA ENCLOSED IN A CHAMBER
- Effect of Dimethyl Ether Synthesis on Methanol- and Iron-making Integrated System
- Direct Conversion of Blast Furnace Gas to Dimethyl Ether over Cu-ZnO-Ga_2O_3/γ-Al_2O_3 Hybrid Catalyst : Optimum Mass Ratio of the Catalyst
- Heat Storage Rate of Magnesium Nickel Hydride
- Hydrogen Reduction of Natural Ilmenite in a Fluidized Bed
- Etching Characteristics by M=0 Helicon Wave Plasma ( Plasma Processing)
- Feasibility of Rotary Cup Atomizer for Slag Granulation
- Exergy Analysis of Charcoal Charging Operation of Blast Furnace
- Numerical Analysis of Multi-Smelter for Melting Metal Waste
- FLOW CHARACTERISTICS AND TEMPERATURE DISTRIBUTION OF AN IMPINGING JET CONFINED IN A CHAMBER
- Development of PCM for Recovering High Temperature Waste Heat and Utilization for Producing Hydrogen by Reforming Reaction of Methane
- Numerical Analysis on Effect of Humidified Blasting on Blast Furnace Operation
- Numerical Inverstigation of Simulaneous Injection of Pulverized Coal and Natural Gas with Oxygen Enrichment to the Blast Furnace
- An unsteady state mathematical model of blast furnace based on multi-fluid concept
- Effects of Slag Compositions on the Rate of Methane-Steam Reaction
- Observation of Molten Slag Surface under Gas Impingement by X-ray Computed Tomography
- Theoretical Design of Cup Atomizer for Heat Recovery of Molten Slag by Chemical Quench
- Effect of Slag Basicity on the Rate of Methane-steam Reaction
- An Application of Bingham Model to Viscous Fluid Modeling of Solid Flow in Moving Bed
- Investigation of the size degradation and powders accumulation within the Blast furnace by using a multi-phase model
- Effect of Solution Loss Reaction on Coke Degradation Rate under Sheer Stress
- Methodology to Evaluate Reduction Limit of Carbon Dioxide Emission and Minimum Exergy Consumption for Ironmaking
- Penetration Effect of Injected Gas at Shaft Gas Injection in Blast Furnace Analyzed by Hybrid Model of DEM-CFD
- Numerical Analysis on Behavior of Unburned Char and Fine Coke in Blast Furnace
- Measurement and Modeling of Thermal Conductivity for Dense Iron Oxide and Porous Iron Ore Aggliomerates in Stepwise Reduction.
- Kinetics of the Oxidation and Reduction of Synthetic Ilmenite.
- Simulation of Transport Phenomena around the Raceway Zone in the Blast Furnace with and without Pulverized Coal Injection.
- Bahavior of- Powders in a Packed Bed with Lateral Inlets.
- Modeling of Solid Flow in Moving Beds.
- Measurements of Heat Transfer Coefficients between Gas and Particles for a Single Sphere and for Moving Beds.
- Recent Progress on Advanced Blast Furnace Mathematical Models Based on Discrete Method