Kinetics of the Oxidation and Reduction of Synthetic Ilmenite.
スポンサーリンク
概要
- 論文の詳細を見る
The kinetics of the oxidation and reduction of synthetic ilmenite was studied thermogravimetrically in the light of kinetic theory for heterogeneous noncatalytic reactions. It was found that the oxidation and reduction proceeded topochemically and their kinetic parameters were determined according to the unreacted core shrinking model. The mineral composition of the partially oxidized and/or reduced ilmenite was examined by means of characteristic X-ray analysis, the results of which showed that there were two phases in the oxidized ilmenite which separated each other. One of them was rich in titanium and the other was rich in iron. There were two phases too separating completely in the reduced ilmenite, one of which was the metallic phase consisting of almost pure iron and the other was an oxide phase mainly composed of titanium dioxides. The composition of the titanium-rich phase in the oxidized ilmenite was between the composition of Fe2O3·TiO2 and that of Fe2O3·3TiO2.
- The Iron and Steel Institute of Japanの論文
著者
-
Yagi Jun-ichiro
Institute For Advanced Materials Processing Tohoku University
-
SUN Kang
Institute for Advanced Materials Processing, Tohoku University
-
Takahashi Reijiro
Institute For Advanced Materials Processing Tohoku University
-
Sun Kang
Institute For Advanced Materials Processing Tohoku University
関連論文
- Operating Conditions for Hydriding Combustion Synthesis of Pure Mg_2NiH_4
- Effects of Hydrogen Pressure and Cooling Rate on the Hydriding Combustion Synthesis of Mg_2NiH_4 Studied by Thermogravimetry and X-ray Diffraction
- Cold-model Experiments on Deadman Renewal Rate Due to Sink-Float Motion of Hearth Coke Bed
- Numerical Analysis of Static Holdup of Fine Particles in Blast Furnace
- Numerical Analysis on Blast Furnace Performance under Operation with Top Gas Recycling and Carbon Composite Agglomerates Charging
- Numerical Analysis on Blast Furnace Performance under Operation with Waste Plastics Injection and Top Gas Recycling
- Numerical Analysis on Injection of Hydrogen Bearing Materials into Blast Furnace
- Numerical Analysis on Charging Carbon Composite Agglomerates into Blast Furnace
- Numerical Analysis on Top Gas Recycling in Blast Furnace with Carbon Composite Agglomerates Charging
- Numerical Evaluation on Blast Furnace Performance under Operation with Carbon Composite Agglomerates Charging
- Numerical Analysis on Effects of Charging Carbon Composite Agglomerates on Blast Furnace Operation
- Mathematical Model of Over-micron and Nano-scale Powders Accumulation in a Coke Fixed-Bed Filter
- Numerical Simulation of the Moving Bed Furnace for Iron Scrap Melting
- Numerical Simulation of the Moving Bed Furnace for Iron Scrap Melting
- Three-dimensional Multiphase Mathematical Modeling of the Blast Furnace Based on the Multifluid Model
- Numerical Analysis of Multiple Injection of Pulverized Coal, Prereduced Iron Ore and Flux with Oxygen Enrichment to the Blast Furnace
- Transient Mathematical Model of Blast Furnace Based on Multi-fluid Concept, with Application to High PCI Operation
- Numerical study on natural gas injection to the blast furnace
- Recovery of Magnetite from Leached Laterite-residue by Magnetic Separation
- Recovery of Nickel from Selectively Reduced Laterite Ore by Sulphuric Acid Leaching
- Lowering of Grinding Energy and Enhancement of Agglomerate Strength by Dehydration of Indonesian Laterite Ore
- Reduction rate of cement bonded laterite briquette with CO-CO_2 gas
- Advanced Processing of Laterite Ore as Raw Material for Ironmaking -Reduction rate of cement-bonded laterite briquette with CO-CO_2 gas-
- Advanced Agglomeration of Laterite Iron Ore Including Combined Water
- Validation of a Blast Furnace Solid Flow Model Using Reliable 3-D Experimental Results
- Sophisticated Multi-phase Multi-flow Modeling of the Blast Furnace
- Thermodynamic Analysis of Thermochemical Recovery of High Temperature Wastes
- Analysis of transient blast furnace behavior by using a 3-D mathematical model
- Three-dimensional blast furnace mathematical modeling based on multi-fluid theory
- Numerical Investigation on Effects of Deadman Structure and Powder Properties on Gas and Powder Flows in Lower Part of Blast Furnace
- Computational Investigation of Scrap Charging to the Blast Furnace
- Analysis of Actual Blast Furnace Operations and Evaluation of Static Liquid Holdup Effects by the Four Fluid Model
- Prediction of Blast Furnace Performance with Top Gas Recycling
- A Mathematical Model for Blast Furnace Reaction Analysis Based on the Four Fluid Model
- A Mathematical Model of Four Phase Motion and Heat Transfer in the Blast Furnace
- Blast Furnace Ironmaking System Using Partially Reduced Iron Ore Reduced by an Energy Source with Low Carbon Content
- Synthesis of Vapor-Grown Carbon Fibers Using Nanocrystalline Fe_Si_B_ Alloy as a Catalyst
- Synthesis of Vapor-Grown Carbon Fibers Using Nanocrystalline Fe_ Zr_7 B_2 Alloy as a Catalyst
- Prediction of Generation Rates in "Reactive Arc Plasma" Ultrafine Powder Production Process
- Numerical Analysis of the Flow Characteristics and Temperature Distribution in Metal Beads Subjected to Transferred Arc Plasma Impingement
- Prediction of Surface Temperature on Metal Beads Subjected to Argon-Hydrogen Transferred Arc Plasma Impingement
- Modeling of the Flow, Temperature and Concentration Fields in an Arc Plasma Reactor with Argon-Nitrogen Atmosphere
- NUMERICAL SIMULATION OF FLOW AND TEMPERATURE DISTRIBUTION IN A TRANSFERRED ARGON ARC PLASMA ENCLOSED IN A CHAMBER
- Effect of Dimethyl Ether Synthesis on Methanol- and Iron-making Integrated System
- Direct Conversion of Blast Furnace Gas to Dimethyl Ether over Cu-ZnO-Ga_2O_3/γ-Al_2O_3 Hybrid Catalyst : Optimum Mass Ratio of the Catalyst
- Heat Storage Rate of Magnesium Nickel Hydride
- Hydrogen Reduction of Natural Ilmenite in a Fluidized Bed
- Feasibility of Rotary Cup Atomizer for Slag Granulation
- Exergy Analysis of Charcoal Charging Operation of Blast Furnace
- Numerical Analysis of Multi-Smelter for Melting Metal Waste
- FLOW CHARACTERISTICS AND TEMPERATURE DISTRIBUTION OF AN IMPINGING JET CONFINED IN A CHAMBER
- Development of PCM for Recovering High Temperature Waste Heat and Utilization for Producing Hydrogen by Reforming Reaction of Methane
- Combustion Waste Gas Cleaning by Carbonized Refuse-Derived Fuel (RDF)
- Numerical Inverstigation of Simulaneous Injection of Pulverized Coal and Natural Gas with Oxygen Enrichment to the Blast Furnace
- An unsteady state mathematical model of blast furnace based on multi-fluid concept
- Effects of Slag Compositions on the Rate of Methane-Steam Reaction
- Observation of Molten Slag Surface under Gas Impingement by X-ray Computed Tomography
- Theoretical Design of Cup Atomizer for Heat Recovery of Molten Slag by Chemical Quench
- Effect of Slag Basicity on the Rate of Methane-steam Reaction
- An Application of Bingham Model to Viscous Fluid Modeling of Solid Flow in Moving Bed
- Investigation of the size degradation and powders accumulation within the Blast furnace by using a multi-phase model
- Effect of Solution Loss Reaction on Coke Degradation Rate under Sheer Stress
- Methodology to Evaluate Reduction Limit of Carbon Dioxide Emission and Minimum Exergy Consumption for Ironmaking
- Numerical Analysis on Behavior of Unburned Char and Fine Coke in Blast Furnace
- Measurement and Modeling of Thermal Conductivity for Dense Iron Oxide and Porous Iron Ore Aggliomerates in Stepwise Reduction.
- Kinetics of the Oxidation and Reduction of Synthetic Ilmenite.
- Bahavior of- Powders in a Packed Bed with Lateral Inlets.
- Modeling of Solid Flow in Moving Beds.
- Measurements of Heat Transfer Coefficients between Gas and Particles for a Single Sphere and for Moving Beds.