Development of driving simulator with full vehicle model of multibody dynamics
スポンサーリンク
概要
- 論文の詳細を見る
- 2002-04-01
著者
-
Suda Yoshihiro
Center for Collaborative Research, The University of Tokyo
-
Suda Yoshihiro
Center For Collaborative Research & Institute Of Industrial Science University Of Tokyo
-
Shiba Taichi
Institute Of Industrial Science The University Of Tokyo
-
Suda Yoshihiro
Center for Collaborative Research & Center of Institute of Industrial Science, The University of Tokyo
-
SHIIBA Taichi
Institute of Industrial Science, The University of Tokyo
関連論文
- ACTIVE CONTROL OF THE MECHATRONIC VEHICLE
- A301 Evaluation of Running Motion with Simulation and Experimental Platform For Single-Axle Scale Model Vehicle
- Effect of Hypoxia on Lactate Variables during Exercise
- Anaerobic Threshold in Chronic Obstructive Pulmonary Disease
- C802 FEASIBILITY OF SELF-POWERED ACTIVE VIBRATION CONTROL APPLIED TO SUSPENSIONS OF RUBBER-TIRED VEHICLES
- Proposal of Electro-Magnetic-Suspension System with Tilting Control
- Vector Liapunov Function Approach to Longitudinal Control of Vehicles in a Platoon
- PROPOSAL OF ELECTRO-MAGNETIC-SUSPENSION SYSTEM WITH TILTING CONTROL
- A402 The Study on Control of Air Suspensions for Rail Vehicles Considering Tight Curving Performance : Experiments and Simulation Using The One-car-modeled Test Bench
- Absolutely exponential stability of a class of neural networks with unbounded delay
- T-3-2-2 Proposal of Simplified Real-Time Multibody Analysis Method for Driving Simulator
- PROPOSAL OF VIRTUAL PROVING GROUND WITH DRIVING SIMULATOR
- T-4-4-4 Contact Force Fluctuation between Rail and Wheel
- A Method to Apply Friction Modifier in Railway System(Intemational Symposium on Speed-up and Service Technology for Railway and MAGLEV Systems)
- D801 A METHOD TO APPLY ERICTION MODIFIER IN RAILWAY SYSTEM
- A603 Basic Study on Dynamic Simulator for Railway Riding Comfort Evaluation
- T-4-2-1 Curving Simulations and Comparison with Measurements for Railway Vehicles
- Development of driving simulator with full vehicle model of multibody dynamics
- Modeling of Electromagnetic Damper for Automobile Suspension