スポンサーリンク
Department Of Electrical And Electronics Engineering Tokyo Institute Of Technology | 論文
- Recipe estimation using mass spectrometer and large-scale data: odor recipe (特集 匂いセンサと嗅覚ディスプレイ)
- Highly Uniform 1.5 μm Wavelength Deeply Etched Semiconductor/Benzocyclobutene Distributed Bragg Reflector Lasers
- Theoretical Analysis of GaInAsP/InP Multiple Micro-Cavity Laser
- Continuous Wave Operation of 1.55 μm GaInAsP/InP Laser with Semiconductor/Benzocyclobutene Distributed Bragg Reflector
- Multiple Micro-Cavity Laser with Benzocyclobutene/Semiconductor High Reflective Mirrors Fabricated by CH_4/H_2-Reactive Ion Etching
- GaInAsP/InP Multiple Short Cavity Laser with λ/4-Air Gap/Semiconductor Bragg Reflectors
- Distributed Reflector Lasers with First-Order Vertical Grating and Second-Order Bragg Reflectors
- GaInAsP/InP Distributed Reflector Lasers Consisting of Deeply Etched Vertical Gratings : Optics and Quantum Electronics
- 1.5-μm-Wavelength Distributed Feedback Lasers With Deeply Etched First-Order Vertical Grating : Optics and Quantum Electronics
- Deeply Etched Semiconductor/Benzocyclobutene Distributed Bragg Reflector Laser Combined with Multiple Cavities for 1.5-μm-Wavelength Single-Mode Operation
- Cooling and Excitation Tests of a Thin 1 mφ×1 m Superconducting Solenoid Magnet
- Measurement of Propagation Velocities of the Normal Zone in a 1 mφ×1 m Superconducting Solenoid Magnet
- Low-Damage GaInAs(P)/InP Nanometer Structure by Low-Pressure ECR-RIBE
- Electric Field Induced Reflection in GaInAsP/InP MQW Structure
- Electric Field-Induced Absorption in GaInAsP/InP MQW Structures Grown by LPE
- Analysis of Leading Edge/Trailing Edge Independent Detection Method in Optical Disk : High Density Recording
- Analysis of Leading Edge/Trailing Edge Independent Detection Method in Optical Disk
- GaInAsP/InP Multiple-Layered Quantum-Wire Lasers Fabricated by CH_4/H_2-Reactive-Ion-Etching
- Fabrication of GaInAs/InP Quantum Wires by Organometallic-Vapor-Phase-Epitaxial (OMVPE) Selective Growth on Grooved Side Walls of Ultrafine Multilayers
- A New-Type 1.5 〜 1.6 μm GaInAsP/InP BIG-DBR Laser by an Island-Type Mesa Process