A note on eigenvalue computation for a tridiagonal matrix with real eigenvalues
スポンサーリンク
概要
- 論文の詳細を見る
MI: Global COE Program Education-and-Research Hub for Mathematics-for-IndustryグローバルCOEプログラム「マス・フォア・インダストリ教育研究拠点」The target matrix of the dhLV algorithm is already shown to be a class of nonsymmetric band matrix with complex eigenvalues. In the case where the band width M = 1 in the dhLV algorithm, it is applicable to a tridiagonal matrix, with real eigenvalues, whose upper and lower subdiagonal entries are restricted to be positive and 1, respectively. In this paper, we first clarify that the dhLV algorithm is also applicable to the eigenvalue computation of nonsymmetric tridiagonal matrix with relaxing the restrictions for subdiagonal entries. We also demonstrate that the wellknown packages are not always desirable for computing nonsymmetric eigenvalues with respect to numerical accuracy. Through some numerical examples, it is shown that the tridiagonal eigenvalues computed by the dhLV algorithm are to high relative accuracy.
著者
-
FUKUDA Akiko
Graduate School of Science, Tokyo University of Science
-
福田 亜希子
東京理科大学理学部
-
福田 亜希子
東京理科大学理学部数理情報科学科
関連論文
- 離散ハングリーロトカ・ボルテラ系による固有多項式の数値的因数分解(理論,応用可積分系,平成20年研究部会連合発表会)
- Discrete hungry integrable systems related to matrix eigenvalue and their local analysis by center manifold theory (Expansion of Integrable Systems)
- A note on eigenvalue computation for a tridiagonal matrix with real eigenvalues
- 離散ハングリー戸田方程式に基づく Totally Nonnegative 行列に対する固有値計算 (科学技術計算における理論と応用の新展開)
- SC2011(Conference Report)
- On some properties of a discrete hungry Lotka-Volterra system of multiplicative type
- SC2011
- ハングリー型の離散可積分系と非対称行列の固有値計算 : 可積分アルゴリズムにおける最近の発展(サーベイ,応用可積分系研究部会)
- On the qd-type discrete hungry Lotka-Volterra system and its application to the matrix eigenvalue algorithm
- Improvement of Electrical Properties of Human Phantom in Low-Frequency Band by Using Carbon Microcoil (特集 第21回MAGDAコンファレンス)
- ハングリー型の離散可積分系と非対称行列の固有値計算 : 可積分アルゴリズムにおける最近の発展
- Improvement of Electrical Properties of Human Phantom in Low-Frequency Band By Using Carbon Microcoil