Microbubble Self-Trapping to Surface of Target
スポンサーリンク
概要
- 論文の詳細を見る
Microbubble self-trapping to the target surface is proposed. The Bjerknes force, which is produced by bubble nonlinear oscillation upon pumping ultrasonic wave radiation, acts as a trapping force on the target surface. A condition for the minimum separation between the neighboring bubbles is required in order to initiate self-trapping. Experiments are carried out using an ultrasonic wave contrast agent. Silicone resin, acrylic resin, and agar gel are examined as targets. Mechanisms by which already self-trapped bubbles promote further self-trapping are observed.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2008-05-25
著者
-
Yamakoshi Yoshiki
Faculty Of Engineering Department Of Electric And Electronic Engineering Gunma University
-
Miwa Takashi
Faculty Of Electro-communications The University Of Electro-communications
-
Miwa Takashi
Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
-
Yamakoshi Yoshiki
Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
関連論文
- Effects of Red Blood Cells On Ultrasonic Wave Microbubble Trapping
- Characterization of Secondary Ultrasonic Waves Radiated from Bubbles Based on Small-Bubble Trapping Pattern Analysis
- Trapping of Micrometer Size Bubbles by Ultrasonic Waves
- Characterization of secondary ultrasonic waves radiated by two oscillating bubbles
- Adaptive Spectral Sensitive Filter for Tissue Harmonic Imaging
- Localization of Living-Bodies Using Single-Frequency Multistatic Doppler Radar System
- Tissue harmonic imaging for low-cost scanners
- An Eulerian Scheme for Direct Numerical Simulation of Multibubble Dynamics in an Acoustic Field
- MIMO Radar System for Respiratory Monitoring Using Tx and Rx Modulation with M-Sequence Codes
- RK09 Tissue Harmonic Imaging Based on Subaperture Signal Processing
- Tissue Displacement Measurement Using Ultrasonic Wave Adaptive Digital Detection Method
- 3D-image reconstruction algorithm based on subaperture processing for medical ultrasonic imaging
- Tx and Rx Modulation MIMO Radar System with Orthogonal Codes
- Microbubble Trapping by Nonlinear Bubble Oscillation Using Pumping Wave
- Low-Frequency Elastic Wave Imaging by Adaptive Combination of Fundamental and Tissue Harmonic Ultrasonic Waves
- An Eulerian Scheme for Direct Numerical Simulation of Multibubble Dynamics in an Acoustic Field
- Yeast Cell Trapping In Ultrasonic Wave Field Using Ultrasonic Contrast Agent
- In Situ Characterization of Microbubble Oscillation by Bubble Aggregation Pattern Analysis
- Microbubble Self-Trapping to Surface of Target
- Measurement of Secondary Ultrasonic Waves from Microbubbles by Holographic Image Reconstruction
- Effects of Bjerknes Forces on Gas-Filled Microbubble Trapping by Ultrasonic Waves
- Effect of Pretrapping of Microbubbles in Sonoporation Using N-Isopropylacrylamide Gel Flow Channel Phantom
- Bubble Manipulation by Self Organization of Bubbles inside Ultrasonic Wave
- Adaptive Spectral Sensitive Filter for Tissue Harmonic Imaging