Bubble Manipulation by Self Organization of Bubbles inside Ultrasonic Wave
スポンサーリンク
概要
- 論文の詳細を見る
Microbubble manipulation using ultrasonic waves is a promising technology in the fields of future medicine and biotechnology. For example, it is considered that bubble trapping using ultrasonic waves may play an important role in drug or gene delivery systems in order to trap the drugs or genes in the diseased tissue. Usually, when bubbles are designed so that they carry payloads, such as drug or gene, they tend to be harder than free bubbles. These hard bubbles receive a small acoustic radiation force, which is not sufficient for bubble manipulation. In this paper, a novel method of microbubble manipulation using ultrasonic waves is proposed. This method uses seed bubbles in order to manipulate target bubbles. When the seed bubbles are introduced into the ultrasonic wave field, they start to oscillate to produce a bubble aggregation of a certain size. Then the target bubbles are introduced, the target bubbles attach around the seed bubbles producing a bubble mass with bilayers (inner layer: seed bubbles, outer layer: target bubbles). The target bubbles are manipulated as a bilayered bubble mass. Basic experiments are carried out using polyvinyl chloride (PVC) shell bubbles. No target bubbles are trapped when only the target bubbles are introduced. However, they are trapped if the seed bubbles are introduced in advance.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2005-06-15
著者
-
Yamakoshi Yoshiki
Faculty Of Engineering Department Of Electric And Electronic Engineering Gunma University
-
KOGANEZAWA Masato
Faculty of Engineering, Gunma University
-
Yamakoshi Yoshiki
Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
関連論文
- Effects of Red Blood Cells On Ultrasonic Wave Microbubble Trapping
- Characterization of Secondary Ultrasonic Waves Radiated from Bubbles Based on Small-Bubble Trapping Pattern Analysis
- Trapping of Micrometer Size Bubbles by Ultrasonic Waves
- Characterization of secondary ultrasonic waves radiated by two oscillating bubbles
- Adaptive Spectral Sensitive Filter for Tissue Harmonic Imaging
- Localization of Living-Bodies Using Single-Frequency Multistatic Doppler Radar System
- Tissue harmonic imaging for low-cost scanners
- An Eulerian Scheme for Direct Numerical Simulation of Multibubble Dynamics in an Acoustic Field
- Bubble Manipulation by Self Organization of Bubbles inside Ultrasonic Wave
- MIMO Radar System for Respiratory Monitoring Using Tx and Rx Modulation with M-Sequence Codes
- RK09 Tissue Harmonic Imaging Based on Subaperture Signal Processing
- Tissue Displacement Measurement Using Ultrasonic Wave Adaptive Digital Detection Method
- 3D-image reconstruction algorithm based on subaperture processing for medical ultrasonic imaging
- Tx and Rx Modulation MIMO Radar System with Orthogonal Codes
- Microbubble Trapping by Nonlinear Bubble Oscillation Using Pumping Wave
- Low-Frequency Elastic Wave Imaging by Adaptive Combination of Fundamental and Tissue Harmonic Ultrasonic Waves
- An Eulerian Scheme for Direct Numerical Simulation of Multibubble Dynamics in an Acoustic Field
- Yeast Cell Trapping In Ultrasonic Wave Field Using Ultrasonic Contrast Agent
- In Situ Characterization of Microbubble Oscillation by Bubble Aggregation Pattern Analysis
- Microbubble Self-Trapping to Surface of Target
- Measurement of Secondary Ultrasonic Waves from Microbubbles by Holographic Image Reconstruction
- Effects of Bjerknes Forces on Gas-Filled Microbubble Trapping by Ultrasonic Waves
- Effect of Pretrapping of Microbubbles in Sonoporation Using N-Isopropylacrylamide Gel Flow Channel Phantom
- Bubble Manipulation by Self Organization of Bubbles inside Ultrasonic Wave
- Adaptive Spectral Sensitive Filter for Tissue Harmonic Imaging