Evaluation Experiment of Ultrasound Computed Tomography for the Abdominal Sound Speed Imaging
スポンサーリンク
概要
- 論文の詳細を見る
Abdominal sound speed tomographic imaging using through-transmission travel time data on the body surface was investigated. To this end, a hundred kHz range low-frequency wave was used to reduce the wave attenuation within an inner body medium. A method was investigated for the reconstruction of the image with the smallest possible number of path data around the abdominal surface. Specifically, the data from a strong scattering spinal cord should be avoided. To fulfill the requirement, the smoothed path algebraic reconstruction technique was introduced. The validity of this method was examined both on the numerically synthesized data and the experimentally measured data for the phantom specimen and actual human subject. It was shown that an abdominal tomographic sound speed image could be successfully obtained by preparing only 32 transducer locations at the circumference around the abdominal surface and their combination of less than 100 number of observation path data as well as by avoiding the data intersecting the spinal cord. In addition, fat regions were extracted having a sound speed lower than the threshold value to demonstrate the possibility of this method for metabolic syndrome diagnosis.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2007-07-30
著者
-
YAMADA Akira
Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Techn
-
Nogami Keisuke
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
-
Yamada Akira
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
関連論文
- Arrayed Ultrasonic Transducers on Arc Surface for Plane Wave Synthesis
- Inverse Scattering Image Reconstruction from Reflection and Transmission Data Obtained Using the Mirror Image Theory
- Inverse Scattering Image Reconstruction Based on the Multi-Frequency Reflection and Transmission Observation Data from Limited Views
- Quadrangular View Ultrasound Inverse-Scattering Computed Tomography
- Quasi 3-D Quantitative Computerized Tomography for Reconstructing Sound Velocity Slices of a Weakly Scattering Object
- Weak Scattering Acoustic Wave Field Analysis Using Backward Propagation Rytov Transform
- Ultrasonic Attenuation Image of the Biological Tissues by using the Diffraction Tomographic Technique
- Stress Analyses of Spur Gears in Consideration of Specific Sliding : Influence of Coulomb Friction on Stresse Distribution
- Transmission-Type Ultrasonic Inverse Scattering Computed Tomography Using Observation Data on Circular Arc Points
- Inverse Scattering Image Reconstruction from Reflection and Transmission Data Observation with Fixed Transmitter/Receiver Pair Transducer
- Evaluation Experiment of Ultrasound Computed Tomography for the Abdominal Sound Speed Imaging
- Ultrasound Inverse Scattering Computed Tomography under the Angular Illumination Limitation
- Imaging of Time and Space Variation of Vortex Wind Velocity Fields Using Acoustic Tomography
- Arrayed Ultrasonic Transducers on Arc Surface for Plane Wave Synthesis
- Compensation of Linearization Approximation Error in Acoustic Inverse Scattering Problem : Quantitative Reconstruction of Attenuation and Sound Speed Images