Acoustic Defect-Mode Waveguides Fabricated in Sonic Crystal: Numerical Analyses by Elastic Finite-Difference Time-Domain Method
スポンサーリンク
概要
- 論文の詳細を見る
A novel acoustic waveguide composed of a line of single defects in a sonic crystal is shown to have desirable properties for acoustic circuits. The absence of a scatterer, i.e., a single defect or a point defect, in artificial crystals such as photonic crystals and phononic crystals leads to some localized resonant modes around the defect. Single defects in a sonic crystal made of acrylic resin cylinders in air are shown in this paper to have resonant modes or defect modes, which are excited successively to form a mode guided along a line of defects. Both a straight waveguide and a sharp bending waveguide composed of lines of single defects are shown equally to have a good transmission with small reflections at the inlet as well as at the outlet within the full band gap of the sonic crystal. Their advantages over conventional line-defect waveguides are clearly shown by their transmission versus frequency characteristics and also by typical examples of their spatial acoustic field distribution. On the basis of these properties, coupled defect-mode waveguides are investigated, and a high mode-coupling ratio is obtained. Defect-mode waveguides in a sonic crystal are expected to be desirable elements for functional acoustic circuits. The results of the elastic finite difference time domain (FDTD) method used as a tool of numerical calculation are also investigated and precisely compared with the experimental band gaps.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2006-05-30
著者
-
Miyashita Toyokatsu
Department Of Electrical Engineering Kyoto Institute Of Technology
-
Miyashita Toyokatsu
Department of Electronics and Informatics, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Japan
関連論文
- Experimental Evaluation of Multifrequency Ultrasonic Range Finder in Air with a Reduced Number of Frequencies
- An Experimental Study of Ultrasonic Diffraction Tomography with Circular Scanning
- Mode Locking of a Standing-Wave Laser with a Homogeneous Spectral Line
- Phase-Locking of the Internally Loss-Modulated Ring Laser
- Unidirectional Oscillation of the Internally Loss-Modulated Ring Laser
- Phase-Locking of the Gas Laser Loss-Modulated with Double the Mode Spacing
- Theory of a Multimode Ring Laser
- Reconstruction of Wide-Bandwidth Scattering Responses from Narrow-Bandwidth Ultrasound Echo in Air
- High-Resolution Long-Wavelength Holographic Imaging with the Aid of Prediction Theory : An Application of AR Model to Multifrequency Hologram : Medical Ultrasonics and Ultrasonic Measurements
- An Investigation of the Phase Locking of Laser Modes by Continuous Resonator-Length Variation : I. Computer Simulation for a Unidirectional Traveling-Wave Ring Laser
- Mode-Locked Traveling-Wave Oscillations of an Internally Loss-Modulated He-Ne Ring Laser
- High Precision Multifrequency Acoustic Radar with an Unequally Spaced Frequency Array Designed by Simulated Annealing
- Numerical Investigations of Transmission and Waveguide Properties of Sonic Crystals by Finite-Difference Time-Domain Method
- Low-Frequency Scattering Component for Quantitative Circular-Scanning Ultrasonic Diffraction Tomography
- On the Range Ambiguities of Multifrequency Holographic Imaging : Comparison between Uniform and Nonuniform Spacings of Frequency Arrays : Ultrasonic Imaging and Microscopy
- Acoustic Defect-Mode Waveguides Fabricated in Sonic Crystal: Numerical Analyses by Elastic Finite-Difference Time-Domain Method